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Abstract 

Air pollution poses major threats to children’s health and learning, making exposure 
at school particularly critical. However, some children are more exposed than oth-
ers, especially depending on the socioeconomic status of their school’s neighbour-
hood. In this study, we explore how exposure to air pollution varies across schools, 
over time and by the socioeconomic characteristics of the neighbourhood using data 
on approximately 23 thousand schools in Italy connected with estimates on Particulate 
Matter 2.5 measured in µg/m3 at a 1 × 1 km resolution from 2002 to 2018 provided 
by the Atmospheric Composition Analysis Group (ACAG). Moreover, we create an indi-
cator of school socioeconomic status (SES) using fine-grained information on the real 
estate value made available by the Italian Observatory of Real Estate Value. Results 
highlight three main findings. First, air quality at the location of the schools improved 
over time by about 35%. Secondly, SES shows an inverted U-curve with PM2.5 suggest-
ing schools in middle SES neighbourhoods to be exposed to the highest levels of pol-
lution. Thirdly, SES does not show a substantive association with a decrease in air pollu-
tion over time. In conclusion, air quality has improved over time in Italy, but schools still 
do not comply with the World Health Organization (WHO) standards and middle SES 
neighbourhoods remain the most exposed to air pollution.
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Introduction
Air pollution is not equally distributed over space and time and some individuals are 
more exposed than others (Colmer et al., 2020; Manduca & Sampson, 2021). Disparities 
in exposure between geographical areas are present and mostly map existing socioeco-
nomic inequalities (Fairburn et al., 2019; Hajat et al., 2015). Moreover, analysis at a finer 
geographical level have shown how exposure can vary within cities and adjacent neigh-
bourhoods (Demetillo et  al., 2020; Heblich et  al., 2020). Similarly, the investigation of 
exposure at specific public institutions, such as schools, unravelled critical environmen-
tal inequalities between children (Grineski & Collins, 2018).

Analysis of the spatial, temporal and sociodemographic inequality in the exposure to 
air pollution is particularly relevant from a population health perspective. For instance, 
research in Europe has demonstrated that geographic variations in air pollution expo-
sure can result in differing rates of premature mortality across affected populations 
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(Khomenko et al., 2021). Also, temporal improvements in air quality could bring several 
benefits for the affected population increasing life expectancy (Conti et al., 2023). Impor-
tantly, as some sociodemographic groups are more vulnerable to air pollution, variations 
in air pollution could affect their outcomes more substantively (Jans et al., 2018).

Schools are a critical public institution where exposure to air pollution has important 
health and educational implications that can persist over time. For example, children 
exposed to high levels of air pollution are more likely to develop respiratory conditions 
such as asthma (Alotaibi et al., 2019; Currie, 2013; Kravitz-Wirtz et al., 2018). Air pol-
lution has been largely found to hamper learning, decrease students’ cognitive abilities, 
and increase their absences (Amanzadeh et al., 2020; Currie et al., 2009; Grineski et al., 
2020; Mullen et  al., 2020) with persisting effects over the life course (Ebenstein et  al., 
2016). Consequently, mapping sociodemographic inequalities at school premises is 
critical from a public health and environmental justice perspective (Grineski & Collins, 
2018).

The main research questions we investigate are three: (1) How does exposure to air 
pollution at school premises vary over time? (2) How does the socioeconomic character-
istic of the school’s neighbourhood associate with exposure to air pollution? (3) How do 
the neighbourhood characteristics of the school associate with the change in air pollu-
tion between 2018 and 2002? To do so, we focus on Italy and collect data on addresses of 
more than 23 thousand public schools and combine them with precise estimates of Par-
ticulate Matter 2.5 µg/m3 (PM2.5) from 2002 to 2018. In addition, we create an indicator 
for the SES of the schools using the average value of real estate in the neighbourhood.

Previous studies mostly focused on inequalities in exposure at a broader geographical 
level or at a single point in time, but exposure can largely vary within the lowest admin-
istrative boundaries and over time (Colmer et al., 2020; Mangia et al., 2013). For exam-
ple, air pollution at critical public institutions, such as schools, could largely vary, but 
studies are so far limited (Grineski & Collins, 2018). In addition, studies on the relation-
ship between socioeconomic status and exposure to air pollution have revealed contrast-
ing results depending on the context or pollutants of analysis, limiting generalizability to 
different countries and types of toxic pollutants (Fairburn et al., 2019; Hajat et al., 2015).

This study advances the literature on disparities in the population exposure to envi-
ronmental risks in three main ways. First, we bring novel evidence on inequalities at a 
detailed geographical level, and at a critical institution, public schools, improving on 
previous studies focused on larger administrative units. Secondly, the longitudinal data 
on air pollution brings new knowledge on the trends of exposure at school premises, 
where previous studies focused on cross-sectional data. Thirdly, we contribute to the 
literature on the socioeconomic disparities in the exposure to air pollution in Europe 
and on how neighbourhood characteristics are associated to the variation in air pollu-
tion over time providing evidence for Italy that hosts one of the most polluted areas in 
Europe.

The article is organized as follows: first, we describe the negative impact of air pol-
lution on population health and why schools are a critical location of exposure to air 
pollution and illustrate the findings of previous literature inquiring spatial and tempo-
ral disparities in air quality. Also, we offer a deeper insight into our case study, Italy. In 
the following, we describe the data, the variables and the empirical strategy. We report 
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the main results answering our research questions and we provide further analysis and 
robustness checks to substantiate our main results. Finally, we conclude with a discus-
sion of the results and their implications.

Air pollution, schools and spatial and temporal disparities in exposure
Air pollution and population health

Air pollution stands as a critical factor affecting public health and of relevance for demo-
graphic research due to its multiple implications for population well-being, morbidity 
and mortality. Air pollutants are not merely of environmental concerns due to their con-
tribution to climate change but they directly impact human health, exacerbating condi-
tions like asthma, heart disease, and even affecting neurological development in children 
(Alvarez-Pedrerol et al., 2017; Buka et al., 2006; Deryugina et al., 2019; König & Heisig, 
2023). Importantly, air pollution increases premature mortality (Khomenko et al., 2021), 
affects life expectancy (Conti et al., 2023) and is estimated to account for a larger share of 
global excess deaths than tobacco smoking (Lelieveld et al., 2020). Moreover, air quality 
can affect demographic patterns influencing migration trends (Chen et al., 2022). Also, 
the consequences of air pollution often disproportionately affect marginalized commu-
nities, amplifying existing health and social inequities (Mohai et al., 2009). Understand-
ing the multifaceted impacts of air pollution is essential for informing policy decisions, 
healthcare interventions, and community planning, with profound consequences, long-
term effects on both individual health outcomes and demographic trends.

Schools as critical locations of exposure

Schools are a critical institution as children’s exposure to air pollution is particularly con-
sequential for their health. Age related vulnerability to air pollution has been depicted 
as a U-curve as children and the elderly are the most susceptible (Johnson et al., 2021; 
Simoni et  al., 2015). The World Health Organization (WHO) report on “Air pollution 
and child health: prescribing clean air” highlights how multiple physiological character-
istics make children more susceptible to air pollution compared to adults (WHO, 2018). 
Children undertake a higher number of breaths, are less able to filter toxic particles and 
their lungs are more sensitive as still in a developmental phase (Goldizen et al., 2016). 
High levels of air pollution have been linked with reduced lung development, smaller 
lung volume (Barone-Adesi et al., 2015; Gehring et al., 2013; Mudway et al., 2019) and 
with an increased risk of developing respiratory conditions such as asthma or wheezing 
and to worsen such conditions when already present in children (Alotaibi et al., 2019; 
Darrow et al., 2014; Orellano et al., 2017). Also, toxic pollutants impair the neurological 
development, determine behavioural issues (Loftus et al., 2020) and increase the likeli-
hood of experiencing attention deficiency (Thygesen et al., 2020) with repercussions on 
their academic achievement (Payne-Sturges et al., 2019).

Air quality at schools is consequential for children’s academic achievement as it 
impairs students’ cognitive abilities and increases their school absences. Air pollution 
has been documented to negatively affect cognitive abilities and productivity also in the 
adult population. For example, a decrease in cognitive performance with exposure to 
high levels of air pollution has been shown in observational studies looking at test scores 
in China (Zhang et al., 2018), decision-making in baseball players in the U.S. (Archsmith 
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et al., 2018) and chess players in Germany (Künn et al., 2019). Moreover, air pollution 
has shown to lower labour productivity in members of parliament in Canada (Heyes 
et al., 2019), industrial workers in China (Chen & Zhang, 2021) and football players in 
Germany (Lichter et al., 2017). In children, the negative effects of air pollution on cog-
nitive abilities are visible in their test scores and documented in several countries such 
as school districts in the U.S (Grineski et  al., 2020), in Iran (Amanzadeh et  al., 2020), 
in Utah, U.S. (Mullen et  al., 2020), in Florida, U.S. (Heissel et  al., 2019) and in Israel 
(Ebenstein et al., 2016). Moreover, the negative effects of air pollution on test scores are 
observed both with short-term exposure (Amanzadeh et al., 2020), during the day of the 
test and with long-term exposure (Mullen et al., 2020). One mechanism that explains the 
long-term effects of air pollution on test scores is a decrease in school attendance (Cur-
rie et al., 2011). In fact, some studies have highlighted air pollution to increase school 
absences in Italy, (Marcon et al., 2014), in Texas (Currie et al., 2009), in Utah (Hales et al., 
2016) in India (Singh, 2020), and to increase attendance when there is an improvement 
in air quality (Conte Keivabu & Rüttenauer, 2022).

Considering the negative effects of air pollution on children health and academic 
achievement, mapping exposure at school premises becomes critical from a public 
health perspective. Nevertheless, air pollution is not equally distributed over space and 
some socioeconomic groups might be more exposed than others.

Spatial disparities in air pollution

Spatial disparities in the exposure to air pollution often map existing societal inequali-
ties. In the U.S. context, individuals with low socioeconomic status (SES) and racial and 
ethnic minorities inhabit neighbourhoods with the highest levels of toxic pollutants 
(Colmer et al., 2020; Manduca & Sampson, 2021). A study focused specifically on public 
schools in the U.S. documented large racial disparities in the exposure to several pollut-
ants but no significant association with the SES of the school (Grineski & Collins, 2018). 
Similar results for ethnic minorities have been found also in Germany where they are 
more exposed to industrial pollutants than natives (Best & Rüttenauer, 2018; Rüttenauer, 
2018).

The SES of a neighbourhood has failed to consistently predict higher exposure to air 
pollution in several studies and literature reviews focused on the European context 
(Deguen & Zmirou-Navier, 2010; Fairburn et al., 2019; Hajat et al., 2015). In Asturias, 
Spain, no SES gradient has been observed (Fernández-Somoano & Tardon, 2014). Con-
versely, in Strasbourg, France, the results are quadratic suggesting an inverted U-curve 
with middle SES individuals being exposed to the highest levels of air pollution (Havard 
et al., 2009). Nevertheless, the majority of the findings denote low SES individuals being 
more exposed to high levels of air pollution (Hajat et al., 2015) as for example in Malmö, 
Sweden (Chaix et  al., 2006), London (Heblich et  al., 2020) or in 16 European cities 
(Temam et al., 2017). The contrasting findings could be related to three main factors.1 
First, studies have been using differing operationalizations of neighbourhood SES and air 
pollution. Secondly, methodological choices could determine biases in the estimation of 

1 For a more detailed discussion, we refer to Bailey et al., (2018) and Hajat et al., (2015).



Page 5 of 27Conte Keivabu  Genus           (2023) 79:27  

the relationship between air pollution and SES (Hajat et al., 2015). For example, models 
accounting for spatial autocorrelation and non-linear associations should be preferred 
and potential confounding factors such as population density included in the analysis 
(Bailey et al., 2018; Hajat et al., 2015). Thirdly, results are often context dependent and 
generalizability of associations to other geographical contexts or units with differing spa-
tial resolution should be done cautiously (Bailey et al., 2018).

The spatial understanding of SES disparities in the exposure to air pollution is critical 
to comprehend the root causes of existing social inequalities. Exposure to air pollution 
has shown to be an independent predictor of intergenerational mobility in the US (Man-
duca & Sampson, 2019, 2021). Additionally, the negative effects of air pollution are also 
multigenerational and transmitted by grandparents to grandchildren (Colmer & Voor-
heis, 2020). Similarly, in utero exposure to air pollution has shown to be causally associ-
ated with lower educational attainment and higher poverty in the U.S. (Persico, 2020). 
Moreover, the negative effects of air pollution during the school years could persist 
throughout the life course. For example, lower test scores determined by air pollution 
have shown to reduce future educational attainment and income (Ebenstein et al., 2016). 
Consequently, it is relevant from a public health and environmental justice perspective 
to map spatial disparities in the exposure to air pollution at school premises as it could 
help to explain the existence of socioeconomic inequalities and shape policymaking to 
help the most exposed individuals.

The temporal persistence of air pollution

Air pollution endures in the same geographical area over time. In London, poor air qual-
ity has persisted in the Eastern part of the city from the eighteenth century to current 
days (Heblich et al., 2020). Also, this part of the city is to these days mostly inhabited 
by low SES individuals highlighting the intergenerational transmission of environmental 
inequalities. In the U.S., the decline in air pollution from 1981 to 2016 has been high-
est in areas with a higher proportion of high SES and white inhabitants (Colmer et al., 
2020). The persisting sociodemographic disparities in air pollution are often explained 
by selective siting and selective migration (Best & Rüttenauer, 2018; Ehler et al., 2023; 
Mohai & Saha, 2015). Selective siting proposes that low SES neighbourhoods suffer the 
persistence or the inflow of new sources of pollution contrary to high SES neighbour-
hoods (ibid.). Selective migration suggests that high SES individuals might relocate to 
less polluted areas and that low SES individuals might choose to live in more polluted 
neighbourhoods as these could have cheaper housing (ibid.). Another possible expla-
nation could be the higher capabilities of high SES individuals to promote public poli-
cies that reduce air pollution in their neighbourhood (Aldred et al., 2021). Nevertheless, 
research on SES and variation of air pollution over time suffers from similar contrast-
ing findings highlighted for the spatial cross-sectional association. For instance, in Scot-
land the association between deprivation and air pollution has shown to not be stable 
over time in the same locality (Bailey et al., 2018). Overall, the persistence of inequali-
ties in air quality over time is concerning from an environmental justice perspective and 
it unravels how environmental inequalities do not differ from other SES inequalities in 
how they persist in the society.
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Italy and air pollution

Air pollution is a big concern for Italian citizens especially for those living in the Po Val-
ley, in the Northern part of the country. This region suffers the presence of several fac-
tors determining high air pollution. The area is densely populated, hosts several highly 
polluting industrial facilities and air pollution is trapped in the territory by natural fac-
tors such as rare wind and the presence of mountains surrounding the area (Raffaelli 
et  al., 2020). The high level of pollution in this area is particularly consequential and 
accounts for one of the highest pollution-related death tolls in Europe (Khomenko et al., 
2021). However, high pollution is not only affecting the northern parts of the country 
as densely inhabited and industrialized areas in the south suffer from poor air quality. 
For example, Taranto a city in the South of Italy hosts a highly polluted industrial facil-
ity negatively affecting the air quality in the neighbouring area (Leogrande et al., 2019; 
Mangia et al., 2013).

Research on the association between SES and exposure to air pollution in Italy, is lim-
ited. One study, in Rome, showed high SES individuals to be more exposed to higher 
levels of pollution as inhabiting the central areas of the city that have a higher incidence 
of traffic (Forastiere et al., 2007). A study on several European cities included for Italy 
the urban areas of Pavia, Verona and Turin showing a negligible role of SES for Pavia and 
Turin. Conversely, contrasting findings were found for Verona where individual level SES 
was positively associated with air pollution, but neighbourhood SES was negatively asso-
ciated with it (Temam et al., 2017).2 Consequently, the Italian case is no different from 
other European contexts in showing contrasting findings in the association between air 
pollution and SES.

Dataset, variables and empirical strategy
Dataset

In this study, we employ five main sources of data for Italy. (1) We use school addresses 
provided by the Italian Ministry of Education; (2) information on PM2.5 air pollution 
is provided by the Atmospheric Composition Analysis Group (ACAG); (3) the average 
value of the real estate collected by the Italian National Observatory of the Real Estate 
Market (Osservatorio del Mercato Immobiliare—OMI) and provided by the Italian 
Agency of Public Finances (Agenzia delle Entrate); (4) we measure population density 
at the school premises using the Global Human Settlement Layer (GHSL); and (5) we 
collected data on the Leaf Area Index (LAI), as a measure of vegetation, available in the 
Copernicus Data Store (CDS).

School addresses are publicly accessible in the national database provided by the Ital-
ian Ministry of Education. However, the location of the schools is not publicly avail-
able. Consequently, to capture the longitude and latitude of the schools we geocoded 
the addresses for the schoolyear 2020–2021 using the HERE API.3 The total number of 
elementary and middle schools present are 26,205 but we lose approximately 2 thousand 
schools, of which 771 are determined by unavailable addresses and the remaining are 

2 However, the study uses differing conceptualizations of individual and neighbourhood SES. The former was captured 
by the educational level of the individual and the latter by the unemployment rate.
3 More information on HERE API is provided in their website: https:// www. here. com/.

https://www.here.com/
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related to missing information on the other variables. Consequently, the sample of geo-
coded schools comprises 23,981 public and private elementary and middle schools. The 
elementary schools are attended by pupils aged 6 to 11 and the middle schools in the age 
12 to 14. These schools are also a proxy of the neighbourhood in which the students live, 
as attendance is often determined based on residence in the school district and most 
students live at about 1.5 km from the school (Mantovani et al., 2022). Nevertheless, in 
certain cases, parents can select a school that is settled in another neighbourhood for 
their children, as for example a private school.

Data on yearly average PM2.5 µg/m3 air pollution from 2002 to 2018 is provided by the 
ACAG that combines satellite, chemical transport modelling and in situ observations to 
achieve a resolution of a 1 × 1 km (Hammer et al., 2020). Using this pollutant, we follow 
previous studies that used PM2.5 due to the harmful effects it has shown to bring on 
human health (Colmer et al., 2020; Darrow et al., 2014; Xing et al., 2016). Moreover, the 
level of outdoor air pollution is a good proxy of indoor exposure, as it has been shown to 
be positively correlate with it (Amato et al., 2014; Raysoni et al., 2011; Rivas et al., 2014). 
The ACAG dataset has several advantages compared to using either satellite observa-
tions or measurement stations. On one hand, satellite observations have the advantage 
of providing reliable information on average levels of pollutants, but often lack precise 
geographic resolution. On the other hand, measurement stations achieve high territorial 
resolution but miss homogeneous coverage in the territory, are susceptible to cheating 
(Zou, 2021) and might not monitor air pollution continuously over time. Consequently, 
the ACAG modelling of observations from different data sources permits to achieve the 
best compromise between accuracy and geographical resolution (Hammer et al., 2020). 
However, this dataset is not free from caveats. In fact, some studies have shown that pol-
lution estimates constructed using satellite observations and chemical transport model-
ling might in some cases overestimate or underestimate the actual levels of pollution 
measured by the local measurement stations determining biases (Fowlie et al., 2019).

We capture the socioeconomic status (SES) of a school, using administrative data pro-
vided by OMI. The dataset is available yearly and by semester and for the purpose of this 
study we used the data on the second semester of 2018. Provided are the minimum and 
maximum values of the real estate measured as euros per square metre and divided in 
detailed geographical areas for the whole national territory. The use of the real estate 
value is justified by previous studies finding it to be strongly correlated with student’s 
socioeconomic status and their math achievements (Ware, 2019).

The GHSL population density maps provide accurate information on the total popula-
tion at fine geographic resolution (Schiavina et al., 2019). The data are available for the 
years 1975, 1990, 2000 and 2015 and we use the latest available. Moreover, we select the 
dataset with the highest resolution of 250 m for each grid cell. The total population in 
each grid cells is computed by GHSL using administrative census data at the local level 
and disaggregated to each cell based on the Global Human Satellite Built dataset that 
captures information on the built environment using satellite data.4

4 For more information, please refer to the following website: https:// ghsl. jrc. ec. europa. eu/ ghs_ bu_ s2_ 2018. php.

https://ghsl.jrc.ec.europa.eu/ghs_bu_s2_2018.php
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The leaf area index (LAI) is a widely used indicator of vegetation. More precisely, it 
leverages remote sensing technologies to measure the amount of leaf material in a spe-
cific territory (Fang et al., 2019). We used the version v3.0 of the CDS that is constructed 
by the Copernicus Climate Change Service(C3S) using satellite data and sophisticated 
algorithms to estimate the effective LAI and capturing the clumping of leaves within a 
1-km grid. The satellite observations are taken every 10 days and we collected data from 
January to December 2018 that has been gathered three times per month either on the 
10th, 20th, 28th, 30th or 31st calendar day.

Variables

The dependent variable of our interest is PM2.5 at the school location. The variable rep-
resents the yearly average level of PM2.5 µg/m3 measured at the grid cell of the school 
location. Our main independent variable is the socioeconomic status of the school com-
puted using the OMI dataset on the average price of the real estate at the location of 
the school. More precisely, we used binary values for the deciles of the real estate value 
computed within provinces to better capture the local variations in real estate value at 
the school location in 2018. For population, we used the value of the population resid-
ing in the 250-m grid cell provided by the GHSL, in which the school is located. The 
LAI is computed averaging the daily values to the yearly level for 2018. Moreover, we 
include two dummy variables retrieved from the administrative data on the schools. 
Respectively, we introduce one variable to denote that a school is private (private = 1) 
and that it is a middle school (middle school = 1). The total number of private schools in 
the sample is 1938 (8.08% of the total sample) and the middle schools are 7751 (32.3% of 
the total sample).

Empirical strategy

The empirical strategy is divided in three main parts. First, we answer our first research 
question providing simple descriptive statistics on the trends in PM2.5 from 2002 to 
2018 at the location of the schools. Secondly, we employ ordinary least squared regres-
sion (OLS) with province fixed effects (FE) to observe how school SES is associated with 
PM2.5 in 2018. Thirdly, we apply the province FE model on the rank change of PM2.5 
as our outcome and use the rank change in SES and the control variables5 between two 
points in time 2018 and 2002, to inquire the factors that are associated with a decrease 
in air pollution over time.

We implement an OLS model with FE to analyse how SES is associated with PM2.5 in 
2018 that is described in Eq. (1):

Here, the outcome variable PM is the logarithm of PM2.5 measured at school i, and 
province p. D is a vector of dummy variables representing the province specific deciles 
of the real estate value at school i, and province p. We use such measurement of SES to 
capture non-linearities in the relationship between SES and air pollution as suggested 

(1)PMip = Dip + Xip + αp eip.

5 For population, we use the values for 2000 as the GHSL does not provide data for 2002.
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in previous research (Bailey et al., 2018; Hajat et al., 2015). X is a vector comprising the 
school-level control variables described in the preceding section. We include αp as prov-
ince FE in the analysis, that are in total 107 and we cluster standard errors at the regional 
level, that are 20, to account for spatial autocorrelation.

We inquire the factors explaining change in PM2.5 over time using the FE model on 
the rank change in PM2.5. More precisely, we compute the rank change for the depend-
ent and the independent variables subtracting the ranking of schools in 2018 from the 
rank in 2002. We prefer the use of rank change based on previous studies that employed 
a similar approach (Chetty et al., 2014; Colmer et al., 2020). For this analysis, the sample 
is reduced to 18,972 as we lack information on real estate value for 2002 for the autono-
mous region of Trentino Alto-Adige.

Results
Disparities in exposure to air pollution across space and time

In Table  1, we show the summary statistics for the main variables in the analysis for 
2018, 2002 and the percentage change between these years. In 2018, the average value 
of PM2.5 at 14.23  µg/m3 highlights that most Italian schools do not comply with the 
WHO guidelines of PM2.5 annual levels below 10 µg/m3 (Krzyzanowski & Cohen, 2008) 
or the newest guidelines proposing a limit of 5 µg/m3. However, there is high heteroge-
neity in the level of air pollution at the school premises with the lowest value of 3.6 µg/
m3 recorded in the municipality of Pescasseroli (2200 inhabitants), located in a natu-
ral reserve in the province of L’Aquila in the region Abruzzo and the highest of 24 µg/
m3 in the municipality of Gorgonzola (20,400 inhabitants), located in the outskirts of 
the city of Milan, in the region Lombardia, where several high polluting industrial facili-
ties are located. Moreover, compared to 2002 we observe a decrease of about 35% in air 
pollution. In Fig. 1, we show the trend in air pollution in the 90th, 50th and 10th per-
centile from 2002 to 2018 and we observe an overall decline in air pollution over time. 

Table 1 Summary statistics

It presents summary statistics on the main variables and the percentage differences between the values in 2018 and 2002
a Missing values are related to Trentino Alto Adige for which we do not have available data for 2002

Variable N Mean Std Min Max

PM2.5 µg/m3 in 2018 23,981 14.23 4.54 3.6 24

PM2.5 µg/m3 in 2002 23,981 22.12 6.63 5.7 35.2

% Change in PM2.5 23,981 − 35.53 7.39 − 63.35 9.09

Estate value in € per  m2 in 2018 23,981 1,398.48 856 170 13,000

Estate value in € per  m2 in  2002a 18,972 747.3 521.19 85 10,000

% Change in estate value 18,972 107.28 90.63 − 70.43 910.64

Population in 2015 23,981 341.66 349.57 0 4524.58

Population in 2000 23,981 345.6 354.19 0 4572.41

% Change in population 23,981 6.32 101.99 − 67.71 7142.24

Leaf area index (LAI) in 2018 23,981 0.46 0.27 0 1.47

Leaf area index (LAI) in 2002 23,981 0.39 0.22 0 1.29

% Change in LAI 23,981 63.38 3,154.97 − 99.03 464,540

Private schools 23,981 0.08 0.28 0 1

Middle schools 23,981 0.32 0.47 0 1
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Moreover, we investigate the absolute and proportional change in PM2.5 in 2018 com-
pared to 2002 based on deciles computed using PM2.5 in 2002 (Appendix 1: Fig. 5). The 
most polluted school neighbourhoods in 2002 experienced the highest absolute reduc-
tion in pollution. However, the relative change in pollution is more homogeneous across 
deciles. In fact, the correlation of the school rank in air pollution in 2002 and 2018 is of 
0.96, suggesting high persistence over time. Looking at the other variables in Table  1, 
we observe a substantial increase in real estate value,6 population and leaf area index 
(LAI) suggesting on average higher real estate value, population density and greener 
neighbourhoods.

In Fig. 2, we map the level of PM2.5 in 2018 to better visualize the heterogeneous spa-
tial distribution of air pollution. Air pollution looks to be particularly concentrated in 
the northern parts of the country, in the Po Valley. The Po Valley is one of the most pol-
luted areas of Europe as it is densely populated, it hosts several industrial facilities and 
natural factors such as rare wind and the presence of mountains surrounding the area 
impede air pollution to get dispersed (Raffaelli et al., 2020). However, high pollution is 
not only affecting the northern parts of the country as densely inhabited and industri-
alized areas in the south suffer from poor air quality (Leogrande et al., 2019). Also, we 
map the % change in air pollution between 2018 and 2002 (Appendix 1: Fig. 6). Here, we 
observe a heterogeneous pattern in the north, a larger decrease in the centre, and a rela-
tively lower decrease in air pollution in the southern parts of the country.

Air pollution and SES inequalities

In Fig. 3 (we display results also in Appendix 1: Table 3), we explore our second research 
question. Here, we can observe an inverted U-curve in the relationship between the 

Fig. 1 Air pollution at schools from 2002 to 2018. The figure shows the level of PM2.5 µg/m3 at the schools at 
the 90th, 50th and 10th percentile in the PM2.5 from 2002 to 2018

6 The real estate prices are not adjusted for inflation.
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province specific deciles in school’s real estate value and log PM2.5. Also, we observe a 
similar pattern in a model without the provincial FE (Appendix 1: Table 3). Considering 
the control variables, private schools show a positive coefficient but that is not statisti-
cally significant. Middle schools are less exposed to pollution compared to elementary 
schools, a higher population count is positively associated with air pollution and the LAI 
is negatively associated with PM2.5.

In Table 2, we show the results of the relationship between the rank change in air pol-
lution and the rank change in the independent variables between 2018 and 2002. In col-
umn (1), the model suggests a positive relationship between an increased rank in real 
estate value and rank in air pollution. However, in column (2) the relationship becomes 
negligible when we add province fixed effects. Nevertheless, we observe private schools 
to be positively associated with increased pollution, likely, as they are more present in 
large urban areas. Conversely, an increase in the rank in the LAI reduces air pollution.

Macro‑regional heterogeneities

Italy has large geographical differences in air pollution and economic development 
that could determine heterogeneities in the associations we have observed in the 
previous analysis. Moreover, a study on Scotland has highlighted how theoretical 

Fig. 2 PM2.5 µg/m3 air pollution at schools in 2018. The figure shows the level of PM2.5 µg/m3 at school 
locations in 2018
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expectations on the association between air pollution and neighbourhood deprivation 
do not replicate in different regions due to the complexity of the association (Bailey 
et al., 2018). We replicated analysis in Fig. 3 and Table 2 separately by three macro-
areas: North, Centre and South. In Fig. 4, the associations for 2018 show an inverted 
U-curve between SES and PM2.5 in the North, a linear relationship in the centre and 
the lack of an association in the South. When inquiring rank change over time the 
results do not substantively differ between regions and resemble those of the pooled 
sample (Appendix 1: Table 4).

Fig. 3 Relationship between school SES and air pollution. This shows the relationship between the deciles of 
real estate value computed at the provincial level and the Log of PM2.5. The model includes control variables 
described in Eq. (1) and province FE. Standard errors clustered at the regional level. The 1st decile is set at the 
reference level. 95% confidence intervals

Table 2 Rank change in air pollution and SES

It shows the results of two models. In column (1), are exposed the results of the OLS model without province fixed effects. In 
column (2), are the results of the OLS model with FE for provinces and standard errors clustered at the regional level

Constant present but not reported

Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05

(1)
OLS

(3)
OLS and FE

Real estate rank change 0.032***
(0.003)

0.004
(0.011)

Private school 0.011***
(0.002)

0.016**
(0.005)

Middle school − 0.001
(0.001)

− 0.001
(0.001)

Rank change population density − 0.015
(0.015)

0.050
(0.037)

Rank change LAI − 0.041***
(0.006)

− 0.048***
(0.012)

Observations 18,972 18,972

Province FE No Yes
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Supplementary analysis and robustness checks
In our main analysis, we focused on a specific type of pollutant, but different results 
could be found when inquiring other sources of air pollution. For example, previous 
research on the U.S. has found that the air pollutants PM10, PM2.5, NO2, CO and lead, 
are heterogeneously distributed in the territory, but to be always most prevalent in the 
most deprived communities (Manduca & Sampson, 2021). We further inquired expo-
sure to air pollution collecting data from the European Pollutant Release and Trans-
fer Register (E-PRTR) dataset for 2018 on the location of toxic industrial facilities in 
Italy. We classify a school as residing close to the industrial facility if it is settled within 
a 2 km buffer calculated around it and construct a binary variable (0–1). We choose a 
2 km boundary based on previous studies for the US showing pollution from industrial 
sites to affect air quality within a buffer of approximately one mile (Currie et al., 2015). 
The schools residing close to an industrial facility are 3317 comprising 14% of the total 
sample. We run a Linear Probability Model (LPM) with the binary variable Industry 
(1 = school close to the industry) without and with province FE and control variables 
used in the previous analysis (Appendix 1: Table 5). The results show a negative coef-
ficient for real estate value at the national level for the 8th and 10th decile, but intro-
ducing provincial level FE, all coefficients are not significant and small. However, the 
relationship might vary depending on the macro-area of interest, especially as 76% of 
these industries are in the North. Nevertheless, when repeating the analysis by the three 
macro-areas, we do not observe differing patterns by macro-areas (Appendix 1: Fig. 7).

Different results could be expected when using alternative operationalizations of 
neighbourhood SES. Additional fine-grained indicators of neighbourhood SES are not of 
easy access for Italy. Nevertheless, the Italian Ministry of Finance makes accessible infor-
mation on taxable income by zip code for a restricted sample of Italian cities. We use 

Fig. 4 Relationship between school SES and air pollution by macro-areas. This shows the relationship 
between the deciles of real estate value computed at the provincial level and the Log of PM2.5 by 
macro-areas. The model includes control variables described in Eq. (1) and province FE. Standard errors 
clustered at the provincial level. The 1st decile is set at the reference level. 95% confidence intervals



Page 14 of 27Conte Keivabu  Genus           (2023) 79:27 

information on taxable income for the year 2019 on 605 zip codes located in 41 munici-
palities matched with 2847 schools and run analysis as in Fig. 3.7 Also, in this analysis, 
we compute the deciles for taxable income by province and use fixed effects at the pro-
vincial level. The results (Appendix 1: Fig. 8) show no substantive association between 
taxable income and air pollution.8 The correlation between taxable income of the zip 
code and real estate value is of 0.76 and we could expect similar results when using real 
estate value with the restricted sample for which we have information for income. We 
replicated results using the real estate value for the smaller sample (Appendix 1: Fig. 9) 
and observe a similar pattern seen in Appendix 1: Fig. 8, bringing further validity on the 
SES measure we are using in our main analysis.

We run some robustness checks. First, we replicated results in Fig. 3 and Table 2 using 
the more restrictive municipality FE instead of provincial fixed effects, showing a weak-
ened association compared to the results of Fig. 3 but similar results to Table 2 (Appen-
dix 1: Fig. 10 and Table 6). Secondly, we replicated results of Fig. 3 using deciles of real 
estate value computed at the national level and results show to resemble those observed 
in the main analysis (Appendix 1: Fig. 11). Thirdly, we used percentage change in air pol-
lution instead of rank change in air pollution to test how sensitive the results are to the 
measurement of variation over time (Appendix 1: Table 7). Results show null effects as 
in Table 2 for all variables except private schools. Also, we used the non-log transformed 
values of PM2.5 to replicate Fig. 3 and found similar results (Appendix 1: Fig. 12). Finally, 
we reproduced the analysis in Fig. 3 using the variables for 2002 to observe if the rela-
tionship observed for 2018 was already previously present (Appendix 1: Fig. 13). Here, 
we observe similar relationships to Fig. 3 suggesting a persistence over time of the rela-
tionship between SES and air pollution.

Discussion and conclusion
In this article, we exposed disparities in the exposure to PM2.5 air pollution at school 
premises in 2018 and the variation over time in Italy. There are three main findings. 
First, the location at which Italian schools are located shows an improvement in air qual-
ity of about 35% in 2018 relative to 2002, but 81% of the schools are still above the old 
WHO guidelines of yearly average PM2.5 below 10 µg/m3 and 99% are above the stricter 
requirement of PM2.5 below 5 µg/m3 introduced in 2021. Secondly, in 2018, we observe 
a non-linear relationship between SES and PM2.5 with schools in middle SES neigh-
bourhoods exposed to higher levels of air pollution. However, we observed some differ-
ences based on the three Italian macro-areas as the non-linear pattern is present mostly 
in the North, linear in the Centre and no differences by SES are observed in the South. 
Thirdly, we do not observe the rank change in SES to be significantly associated with a 
rank change in PM2.5, but the higher the increase in vegetation in the neighbourhood 
the largest the decline in air pollution in 2018.

The steady decrease over time of air pollution in Italy confirms previous findings for 
other country contexts. For example, the reduction in PM2.5 over time shows a pattern 

7 We are not able to replicate the analysis of Table 2 using taxable income as data by zip code are available only for the 
years 2011, 2015, 2019, 2020.
8 Similar results for the fixed effects model are observed also when running the analysis by macro-areas.
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that is similar to the United States (Colmer et al., 2020). For Italy, the high levels of air 
pollution in the Po Valley have been previously depicted and have been targeted by poli-
cies to improve the air quality of the citizens (Raffaelli et al., 2020; Stafoggia et al., 2019). 
However, to our knowledge, this is the first time that the improvements in PM2.5 from 
2001 to 2018 are exposed for Italy at a fine geographic resolution and for schools. The 
decline on air pollution has several important implications for public health and popula-
tion outcomes. Importantly, a recent study documented how the decline in air pollution 
from 1990 to 2019 in Italy translates in a substantive decrease in the burden of disease 
related to air pollution (Conti et al., 2023). For example, enhanced air quality is believed 
to have led to improvements in multiple public health indicators, including mortality 
rates, Disability-Adjusted Life Years (DALYs), Years Lived with Disability (YLD), and 
cardiorespiratory conditions such as strokes or chronic obstructive pulmonary diseases.

The results on the relationship between SES and air pollution highlight how this can 
differ depending on the context and within a country. In the U.S., the poorest neighbour-
hoods are the most exposed to high levels of air pollution (Colmer et al., 2020; Manduca 
& Sampson, 2021). However, in Europe, the results look more mixed (Hajat et al., 2015) 
and previous findings on SES and air pollution have found a positive relationship in Italy, 
in Rome, when observing citizens’ exposure to traffic-related air pollution in the end of 
the twentieth century (Forastiere et al., 2007). Here, we have shown SES to have a non-
linear relationship with PM2.5 implying higher exposure to air pollution for individu-
als attending schools in middle SES neighbourhoods. However, this appears to be the 
case mostly in the North of the country. When looking at an alternative measure of air 
pollution, proximity to industrial plants, we did not find a substantive association with 
SES. Additionally, the restricted urban sample for which we have information on taxable 
income per zip code showed no association with air pollution. Overall, the findings sug-
gest middle SES schools to be the most exposed to PM2.5 in Italy, but with differences 
determined by the macro-area, source of air pollution and SES indicator.

Air pollution is geographically concentrated in the same neighbourhood over time. We 
observed a high correlation of 0.96 in the school rank in air pollution in 2018 and 2002, 
we found rank change in real estate value to not be related to a decrease in air pollution 
over time and the association in 2018 to be peculiar to the one observed in 2002. Inter-
estingly, a factor that shows to reduce air pollution is an increase in the LAI, suggesting 
vegetation to be relevant in increasing air quality in a neighbourhood.

The study has several limitations. First, the descriptive results presented should 
be cautiously interpreted as we do not estimate a causal association between PM2.5 
and SES and we are not able to account for reverse causality in the observed relation-
ship. Additionally, other confounding factors such as the presence of local amenities 
at the school location could be influencing our findings. Reverse causality could be a 
problem as previous studies have shown air quality to affect housing prices (Sager & 
Singer, 2022) and policies affecting traffic-related air pollution in cities such as con-
gestion charges have shown to increase housing value in London (Tang, 2021) but to 
decrease them in Milan (Percoco, 2014). Secondly, results should not be generalized 
to other country contexts, air pollutants and SES measures as the observed relation-
ships could widely vary as shown in previous studies (Hajat et al., 2015). Thirdly, the 
choice of focusing on schools as a unit of analysis could be debatable. On one hand, the 
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attention on schools increases awareness on the environmental hazards encountered 
by a vulnerable population and permits to analyse a more fine-grained geographical 
unit. On the other hand, schools limit generalizability to other social groups and might 
not perfectly capture the differences in exposure experienced by students at home. 
Thirdly, this study does not present information on other relevant characteristics of 
the schools, the neighbourhoods, student’s outcomes, or air pollutants. This limits 
our analysis to school locations and not schoolchildren as done in previous studies 
(Grineski & Collins, 2018) and does not allow us to weight our estimates by the num-
ber of pupils in a school. Also, we are unable to account for the closure or relocation 
of schools in previous years as information on school addresses is available only from 
2015. Moreover, we were limited in the use of the real estate value as a proxy of school 
SES for lack of similarly fine-grained level data on SES for the whole of Italy. However, 
previous studies have shown real estate value to be highly correlated with other SES 
measures (Ware, 2019) and we found that to be the case for a restricted sample for 
which we have information on taxable income. Similarly, we inquired PM2.5 as fine-
grained data are only available for this pollutant but other toxic air pollutants such as 
PM10, ozone, nitrogen dioxide or lead could highlight the existence of other environ-
mental risks. Nonetheless, PM2.5 is often cited as the most important air pollutant for 
public health (Colmer et  al., 2020) and we complemented the analysis exploring the 
relationship between SES and proximity to industrial facilities.

Further analysis could build on the evidence exposed here investigating three main 
promising research opportunities. First, studies could use a panel data analysis or test 
the impact of policy changes such as congestion charges to provide a more robust 
estimate of how changes in neighbourhood SES over time affect PM2.5 in Italy. Sec-
ond, it could be inquired which are the sources of pollution that determine a larger 
exposure to PM2.5. Third, by gathering data on pupil characteristics and school out-
comes, we could shift our focus from estimating air pollution exposure at the school 
level to understanding its impact on individual schoolchildren. Also, such data would 
enable us to analyse how air pollution specifically influences test scores and attend-
ance rates. Fourth, the same approach used in this article could be extended to other 
country contexts or public institutions. For example, analysing the same relationship 
in developing countries could reveal different relationships between SES and PM2.5 
and inform about the environmental risk children face. Additionally, analysing the 
same association at other critical institutions such as hospitals could uncover other 
relevant locations of exposures that are consequential for public health (El-Sharkawy 
& Noweir, 2014).

In conclusion, despite a constant improvement in air quality, air pollution continues 
to pose a threat for the Italian population at large and children in particular. The level 
of PM2.5 still exceeds the WHO guidelines or the institutional recommendations set 
by the UNESCO Chair on Health Education and Sustainable Development & the Ital-
ian Society of Environmental Medicine (Pulimeno et  al., 2020). Given the existing 
evidence on the public health benefits of lower air pollution, policymakers have the 
important task of designing policies targeting locations that suffer from low air qual-
ity and enhance population health.
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Appendix 1
See Tables 3, 4, 5, 6, 7 and Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13.

Table 3 Air pollution, school SES and different model specifications

This shows the results of two models. In column (1), are exposed the results of an OLS model without province FE. In column 
(2), we present results for the OLS with province FE with clustered standard errors at the regional level

Constant present but not reported

The 1st decile is set at the reference level. Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05

(1) OLS (2) OLS and FE

2nd decile of real estate value 0.036***
(0.009)

0.015
(0.012)

3rd decile of real estate value 0.042***
(0.008)

0.032*
(0.015)

4th decile of real estate value 0.043***
(0.009)

0.050**
(0.016)

5th decile of real estate value 0.052***
(0.009)

0.058**
(0.018)

6th decile of real estate value 0.066***
(0.009)

0.067**
(0.019)

7th decile of real estate value 0.065***
(0.009)

0.066**
(0.019)

8th decile of real estate value 0.046***
(0.009)

0.061*
(0.024)

9th decile of real estate value 0.051***
(0.009)

0.055*
(0.025)

10th decile of real estate value − 0.017
(0.010)

0.011
(0.029)

Private school 0.078***
(0.008)

0.010
(0.006)

Middle school − 0.015***
(0.004)

− 0.009***
(0.002)

Population in 250 m (per 1000) − 0.095***
(0.007)

0.030**
(0.009)

LAI − 0.541***
(0.009)

− 0.420***
(0.039)

Observations 23,981 23,981

Province FE NO YES

Table 4 Rank change in air pollution and real estate value by macro-area

This shows the results for the OLS model with province FE and standard errors clustered at the regional level

Constant present but not reported

Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05

(1)
North

(2)
Centre

(3)
South

Real estate rank change − 0.014
(0.009)

0.034
(0.011)

0.010
(0.025)

Private school 0.017*
(0.007)

0.018*
(0.003)

0.011
(0.011)

Middle school 0.001
(0.001)

0.001
(0.002)

− 0.002*
(0.001)

Rank change population 0.020
(0.043)

− 0.030
(0.061)

0.121
(0.059)

Rank change LAI − 0.037**
(0.007)

− 0.023
(0.022)

− 0.074*
(0.028)

Observations 8672 3290 7010

Province FE Yes Yes Yes
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Table 5 Proximity to industry and real estate value

This shows the results of the LPM with province level deciles of real estate value. In column (2), we show the results of the 
LPM with FE for provinces and clustered standard errors at the regional level

The 1st decile is set at the reference level

Constant present but not reported

Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05

(1)
LPM

(2)
LPM and FE

2nd decile of real estate value 0.014
(0.009)

0.009
(0.014)

3rd decile of real estate value 0.011
(0.009)

0.008
(0.015)

4th decile of real estate value 0.014
(0.009)

0.003
(0.016)

5th decile of real estate value − 0.006
(0.010)

− 0.003
(0.022)

6th decile of real estate value 0.022*
(0.010)

0.008
(0.022)

7th decile of real estate value − 0.013
(0.010)

− 0.025
(0.019)

8th decile of real estate value − 0.022*
(0.010)

− 0.030
(0.021)

9th decile of real estate value − 0.013
(0.010)

− 0.033
(0.022)

10th decile of real estate value − 0.032**
(0.011)

− 0.040
(0.026)

Private school 0.028***
(0.008)

0.013
(0.010)

Middle school 0.006
(0.005)

0.004
(0.002)

Population in 250 m (per 1,000) − 0.042***
(0.007)

0.024
(0.014)

LAI − 0.233***
(0.010)

− 0.237***
(0.046)

Observations 23,981 23,981

R-squared 0.028 0.194

Province FE No Yes

Table 6 PM2.5 and rank change in PM2.5 with municipality FE

This shows the results of the OLS model for rank change with municipality FE and standard errors clustered at the provincial 
level

The total sample is reduced as singleton observations are dropped

Constant present but not reported

Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05

(1)
Rank change PM2.5

Rank change estate value − 0.005
(0.006)

Rank change population density 0.039
(0.020)

Rank change LAI − 0.031***
(0.007)

Private school 0.003
(0.002)

Middle school 0.002***
(0.000)

Population within 250 m

Observations 17,529

Municipality FE Yes
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Table 7 Percentage change in PM2.5 and SES

This shows the results of the OLS model with and without province FE

Standard errors clustered at the regional level

Constant present but not reported

Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05

OLS (2)
OLS and FE

% change in real estate value − 0.001*
(0.001)

− 0.002
(0.002)

Private school 1.044***
(0.196)

1.411***
(0.328)

Middle school 0.024
(0.115)

0.040
(0.052)

% change in population density − 0.001
(0.001)

− 0.000
(0.000)

% change in LAI 0.000
(0.000)

− 0.000
(0.000)

Observations 18,972 18,972

Province FE No Yes

Fig. 5 Absolute and relative decline in air pollution at schools. In the left, can be observed the absolute 
reduction in pollution in 2018 compared to 2002, based on deciles computed for pollution at schools in 
2002. In the right graph, can be observed the proportional change in air pollution



Page 20 of 27Conte Keivabu  Genus           (2023) 79:27 

Fig. 6 Percentage change in air pollution between 2018 and 2002. In the map, can be observed the % 
change in air pollution in 2018 compared to 2002

Fig. 7 Probability of proximity to an industry and SES by macro-area. This shows the relationship between 
the deciles of real estate value computed at the provincial level and the probability of the school being close 
to an industry by macro-areas. The model includes control variables described in Eq. (1) and province FE. 
Standard errors clustered at the provincial level. The 1st decile is set at the reference level. 95% confidence 
intervals
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Fig. 8 PM2.5 and taxable income. This shows the relationship between the deciles of taxable income 
computed at the provincial level and log PM2.5. The model includes control variables described in Eq. (1) and 
municipality FE. Standard errors clustered at the provincial level. The 1st decile is set at the reference level. 
95% confidence intervals

Fig. 9 PM2.5 and SES in the restricted sample. This shows the relationship between the deciles of real 
estate value computed at the provincial level and log PM2.5. The model includes control variables described 
in Eq. (1) and municipality FE. Standard errors clustered at the provincial level. The 1st decile is set at the 
reference level. 95% confidence intervals
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Fig. 10 PM2.5 and SES with municipality FE. This shows the relationship between the deciles of real estate 
value computed at the provincial level and log PM2.5. The model includes control variables described 
in Eq. (1) and municipality FE. Standard errors clustered at the provincial level. The 1st decile is set at the 
reference level. 95% confidence intervals

Fig. 11 PM2.5 and real estate values computed at the national level. This shows the relationship between 
the deciles of real estate value computed at the national level and log PM2.5. The model includes control 
variables described in Eq. (1) and province FE. Standard errors clustered at the regional level. The 1st decile is 
set at the reference level. 95% confidence intervals



Page 23 of 27Conte Keivabu  Genus           (2023) 79:27  

Fig. 12 Non-log PM2.5 and SES. This shows the relationship between the deciles of real estate value 
computed at the national level and PM2.5. The model includes control variables described in Eq. (1) and 
province FE. Standard errors clustered at the regional level. The 1st decile is set at the reference level. 95% 
confidence intervals

Fig. 13 Relationship between school SES and air pollution in 2002. This shows the relationship between 
the deciles of real estate value computed at the provincial level and PM2.5 with data for 2002. The model 
includes control variables described in Eq. (1) and province FE. Standard errors clustered at the regional level. 
The 1st decile is set at the reference level. 95% confidence intervals
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