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Abstract

Demographic analyses of multistate populations are commonplace, as are situations
where population stocks are known but population flows are not. Still, demographic
models for multistate populations with changing rates remain at an early stage of
development, limiting dynamic analyses and analytical projections. Here, a new
approach, the Intrinsic Linkage-Rate Ratio (IL-RR) model, is presented and explored.
The key IL parameter, w, is a simple weight for projecting populations. Using the
ultimate state composition implied by the prevailing rates, the IL-RR model provides
new relationships that connect multistate populations over time and allow analytical
population projections. Parameter w reflects population metabolism and scales the
level of the transfer rates. Compositional change is driven by the sequence of implicit
stable population compositions. The IL-RR approach also provides a new method for
estimating transfer rates within an interval from population numbers at the beginning
and end of the interval. The new relationships developed advance the ability of
demographers to model multistate populations with changing rates and to relate
population stocks and flows.

Keywords: Intrinsic linkage, Multistate models, Projection matrix, Rate matrix, Rate
estimation, Stable populations

Background
Multistate phenomena are common in demography, as individuals move between

different marital statuses, regions of a country, labor force statuses, and so on. The

modern demographic analysis of fixed rate multistate models dates from Rogers

(1975) and was further developed in Land and Rogers (1982) and Schoen (1988,

Chaps. 4 and 5). Still, the ability of demographers to model the dynamics of multi-

state populations with time varying rates remains quite limited.

In the long term, the behavioral rates of interstate transfer determine the state

composition of a population. In the short term, the composition at the end of a time

interval is determined by the rates during that interval and the initial population

composition. Analytical models that describe the evolution of a multistate population

subject to time varying rates are discussed in Schoen (2006, Chap. 8), but none have

been particularly useful. Schoen (2014), building on the birth-death model in Schoen

(2013), presented a multistate projection approach based on the idea of “intrinsic

linkages,” i.e., linear relationships between the dominant right eigenvectors of projec-

tion matrices and the sequence of population compositions. Despite the promise of
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that approach, there were difficulties in specifying the full projection matrices, the

properties of the linkage parameter were not fully developed, and the eigenvectors were

not related to the projection elements.

Here, we more fully articulate an improved Intrinsic Linkage (IL) approach, con-

necting the IL parameter to demographic measures and relating the dominant right

eigenvector to functions of the transfer rates. Emphasis is on the matrix of rates ra-

ther than on the matrix of transition probabilities, as the rates are independent of

each other and directly reflect behavior, i.e., a movement from one state to another.

The present analysis yields new relationships between population stocks and flows,

equations that can analytically project multistate populations, and flexible proce-

dures for determining the array of transfer rates. In addition, with the beginning and

ending populations known, the new Intrinsic Linkage-Rate Ratio (IL-RR) approach

can be used to estimate an interval’s rates of interstate transfer.

The paper begins by setting out the mathematical structure of IL models and how

model values can be determined. IL-RR models with two, three, and more than three

states are then explored, and IL-RR models are examined from a graph theory per-

spective. The section “Finding an appropriate value for parameter w” provides ways

to find an appropriate value for IL parameter w, and “Two hypothetical model calcu-

lations” shows two hypothetical model calculations. The IL approach is then used as

a rate estimation method. After the “Summary and conclusion,” Appendix 1 gives a

brief discussion of the eigenstructure decomposition of a matrix, and Additional file

1 presents illustrative calculations of IL-RR models.

The mathematical structure of multistate IL models
This section presents the IL equation and its parameter, w. The properties of parameter w

are highlighted, and the structure of the multistate models considered here is set forth.

The IL assumption

A fundamental principle of population dynamics is that, at each time point, every

population is moving towards the stable composition implied by its prevailing rates

(Schoen and Kim 1991). Building on that principle, the IL approach assumes that, in

every time interval, each state’s population moves the same fraction of the distance

between its current proportion of the total population and its ultimate stable (i.e.,

dominant right eigenvector) proportion. The IL equation is then, for all j,

f jt ¼ 1� wð Þτjt þ w fj;t�1 ð1Þ

Where fjt is the fraction of the total population that is in state j at time t (ΣN
j = 1 fjt =

1); N is the number of living states; w is the IL parameter (0 ≤w < 1); and τjt is the frac-

tion of the stable population, implied by the rates prevailing over the t − 1 to t interval,

that is in state j (ΣN
j = 1 τjt = 1). Equation (1) modifies IL Eq. (5) of Schoen (2014), in

that Eq. (1) uses population fractions rather than size relative to the first state in order

to avoid complicating scale adjustments.

Equation (1) defines IL parameter w in terms of the weighted average of initial and

stable populations that determines the end of interval population composition. A larger

value of w gives more weight to the initial composition, while a smaller value of w gives

more weight to the ultimate stable fraction. Since the larger the value of w the less the
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change in state composition, w reflects the metabolism of the model (Ryder 1975), that

is the level of turnover or movement between states that drives the pace of convergence

to stability.

The IL-RR approach assumes that, in any given model, the value of w is constant

over both state and time. In every time interval of an N-state model, IL Eq. (1) provides

(N − 1) constraints on the end of interval populations or on the rates prevailing during

the interval. Those IL constraints are far looser than the stable requirement of constant

rates and allow the state composition to change as the transfer rates vary over time.

From the fundamental principle, in any multistate population, every state fraction

moves in the direction specified by the IL assumption. The IL constraints arise because

states typically do not move uniformly, as required by Eq. (1). The IL assumption is

eminently plausible, limits population change in a simple and reasonable fashion, and

provides new relationships in the context of a dynamic multistate model.

Equation (1) has the great advantage of being cumulative over time, as the time

trajectory of each state can be expressed in terms of implied stable proportions τjt, the

initial (t = 0) population, and parameter w by means of the relationship

fjt ¼ f j0w
t

� � þ 1� wð Þ
Xt

i¼1

τjiw
t�i ð2Þ

Equation (2) follows from repeated applications of Eq. (1), paralleling the derivation

in Schoen (2014). The contribution of initial population fj0 and of past stable fractions

τj diminishes exponentially over time, as they are multiplied by ever higher powers of w

(0 ≤w < 1). At large time T, Eq. (2) reduces to

fjt ¼ 1� wð Þ
XT
i¼1

τjiw
t�i ð3Þ

Knowledge of w, initial values, and the time trajectory of the τj thus allow the

composition of the model to be analytically projected as far into the future as the τjt-

sequence extends.

IL relationships

IL parameter w, as defined by Eq. (1), has significant connections to transfer rates and

probabilities. Two relationships, to be demonstrated in the following sections, are of par-

ticular significance. First, w is equal to a real subordinate eigenvalue (root) of the transi-

tion probability matrix. That finding is consistent with viewing w as an indicator of the

speed of convergence to stability (Schoen 2006, Chap. 2). Second, in IL projections, the ef-

fect of w on the rates is separable from the effects of the τ’s and initial values, and yields

an overall factor of (1 −w)/(1 + w) that applies to all rates. A model with a different value

of w would have all of its rates proportionally adjusted. In short, parameter w sets the level

of turnover and the speed of convergence by raising or lowering all of the rates of inter-

state transfer. Those consequences of the definition of w have not been noted before and

are not obvious from Eq. (1). They demonstrate how w impacts demographic behavior

and show its relationship to intrinsic demographic measures. In the following sections,

those relationships are established algebraically for N = 2 and numerically for models with

three or more states.
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Specifying the multistate models being considered

Here, we examine multistate models with no growth or attrition to focus attention on

the rates of interstate transfer in an analytically tractable context. In practice, that re-

striction only eliminates fertility or mortality that differs across states. In the absence of

state differentials, changes in size can readily be incorporated as overall scaling factors.

Age is not explicitly recognized; cohort analyses, where time reflects age, can readily be

done.

To fix the state space of the models, we assume that the N-state models have all N states

present at stability. Models that have states with exits but no entrants have states that are

not present at stability, and hence are excluded. That restriction can frequently be relaxed,

however, as τj can often equal zero in Eq. (1) without compromising the analysis.

Now consider the multistate model with N states and R nonzero rates of interstate

transfer. The general rate matrix of such a model, MN, can be written as follows:

MN ¼
�Σm1j m21 m31 … mN1

m12 � Σm2j m32 … mN2
: : : :

m1N m2N m3N �ΣmNj

2
66664

3
77775 ð4Þ

Where the sums over j range over all possible destination states, and mij is the occur-

rence/exposure rate of movement from state i to state j. With a time index added, mijt

represents that rate over the t − 1 to t time interval. Matrix MN can have up to N (N − 1)

distinct interstate transfer rates. A transfer rate is zero whenever there is no direct move-

ment from state i to state j. Here, we only consider models where R ≥N. If R < (N − 1), the

N states are not all connected. If R = (N − 1), all states are not present at stability, and the

beginning and ending populations determine the rates. That case, which has an important

application to parity status models, is discussed in depth in Schoen (2016). Accordingly,

here, we consider models where N ≤ R ≤N (N − 1).

With the permissible transfers between states known, we can write N flow equations,

one per state, that describe the movements (flows) between model states. With time

intervals of n years, each flow equation has the form

fjt ¼ f j; t�1 � n=2ð Þ f jt þ f j;t�1
� � XN

i ¼ 1
i≠j

mjit þ n=2ð Þ ½
XN
i ¼ 1
i≠j

f it þ f i;t�1
� �

mijt � ð5Þ

Flow Eq. (5) is a basic accounting equation. With total population size scaled to one,

the number in a state at the end of an interval equals the number in the state at the

beginning, minus the exits (or decrements), and plus the entries (or increments) during

the interval. Equation (5) assumes linearity in fj over the n-year interval, so Ljt, the

number of person-years lived in state j during the t − 1 to t time interval, is given by

Ljt ¼ n=2ð Þ f jt þ f j;t�1
� � ð6Þ

The number of moves (or transfers) from state j to state i during the interval is Ljtmjit.

Since the fj sum to one, there are (N − 1) independent flow equations that constrain

model values.
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Now consider ΠN, the transition probability or projection matrix associated with MN.

The ijth element of ΠN, πji, i ≠ j, is the probability that a person in state j at the begin-

ning of an interval is in state i at the end of the interval, with πjj probability that a per-

son in state j at the beginning of the interval is also in state j at the end. In contrast to

the rate matrix elements, the value of πji is zero only when there is no route, direct or

indirect, from state j to state i.

To go from rates to probabilities is the classic problem of life table construction. We

again use the linear assumption of Eq. (6) and write the transition probability matrix as

ΠN ¼ I� n=2ð ÞMN½ ��1 Iþ n=2ð ÞMN½ � ð7Þ

Where I is the N × N identity matrix (cf. Schoen 1988, Chap. 4).

Determining the IL model values
In a multistate model with N states and R nonzero rates, we seek the (N − 1) end of

interval populations and the R transfer rates. Assume that we know, or can determine

IL parameter w, and have (N − 1) IL equations in the form of Eq. (1), and (N − 1) flow

equations of the form of Eq. (5). To fully determine the model, we need (R −N + 1)

additional constraints. The innovation here is expressing the dominant right eigen-

vector elements of MN in terms of the transfer rates, which provides further (N – 1)

constraints. That is readily done, since eigenvector elements are functions of the trans-

fer rates.

In general, the transfer rates are not known when the IL-RR approach is used. If all of

the transfer rates are known, the projection matrices can be found from Eq. (7), and the

projections carried out directly. In that case, Intrinsic Linkages are generally not present,

as the implicit parameter w values are likely not constant over all states and across a

sequence of arbitrary rate matrices. The IL-RR approach, by imposing a constant w, allows

projections to be made without knowledge of the transfer rates. The relationships between

the τ’s and the rates then contribute to the solutions for the rates.

To specify the complete multistate model, two cases must be considered.

The two-step solution when R ≥ 2(N − 1)

Every projection needs to be guided by some information or assumptions. Here, assume

that all of the τj values are known. As Eq. (1) indicates, the IL approach stresses the

centrality of the dominant eigenvector implied by the rates prevailing in every interval

of a population trajectory. Knowing the sequence of τjt values means knowing the se-

quence of implied stable population compositions. Such knowledge represents ongoing

population dynamics in terms of clearly interpretable quantities.

In the first step of the two-step solution, population composition is projected into the

future using IL Eqs. (1–3). With w and the fj0 and τjt values known, the entire trajectory

of future fjt values can be found immediately. The solutions are unique and demographic-

ally valid (i.e., real and non-negative). The ability to do such analytical projections is a

major advantage of the IL approach and can be extremely useful in applied work.

In the second step, the R nonzero transfer rates are found. Given the (N − 1)

flow equations and the (N − 1) equations that relate the τj values to the rates, add-

itional (R − 2[N − 1]) constraints are needed to complete the solution. When R = 2(N − 1),
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the two-step solution fully determines the model rates, for any number of states, with no

need for additional constraints.

If R > 2(N − 1), the additional (R − 2[N − 1]) constraints can come from any source,

including rates, cross-product ratios, or rate products. A simple, flexible approach is

to use known (or assumed) rate ratios. In a model with all rates present, think of the

2(N − 1) rates that can be determined by the IL-RR method as being on the super-

and sub-diagonals of the rate matrix, i.e., the diagonals immediately above and below

the main diagonal. In each column, the ratio of (i) a rate above (or below) the super-

(or sub-) diagonal rate, to (ii) that super- (or sub-) diagonal rate, can yield a further

constraint. Applying that procedure to all rates above the super-diagonal or below

the sub-diagonal can supply the needed constraints. In models with some zero rates,

fewer constraints are needed. If a super- or sub-diagonal rate is zero, the nearest

nonzero rate above (or below) the diagonal can be used. In general, the algebra

underlying the rate equations is straightforward, but there need not be a demograph-

ically valid solution and multiple solutions possible.

The one-step solution when R < 2(N–1) or τj values are not known

We seek (N–1) end of interval population fractions and R rates, for a total of

(R + N–1) unknown values. We have (N–1) IL equations and (N–1) flow equa-

tions, thus (R–N + 1) < (N–1) further constraints are needed. It follows that all of

the (N–1) τj (or uj) values cannot be specified a priori; at least one is

constrained by the flow and IL equations. Lacking all of the τj values, IL Eq. (1)

cannot be implemented for all states, and the first step above cannot be carried

out.

The one-step solution simultaneously solves for the rates and the end of interval

population composition. Knowledge of parameter w, initial population values, and

(R–N + 1) < (N–1) additional constraints suffice to do so. The necessary constraints

can come from any source, including τj values and rate ratios. The one-step

approach proceeds interval by interval, and thus is less attractive than the two-step

approach. A numerical solution can always be found, but multiple solutions are

possible, and no demographically valid solution may exist.

Stability in the special case of constant dominant right eigenvectors

Consider the case where a two-step solution is possible, and the τj values are

constant over time. Then, the rate matrix and the population projection matrix are

constant over time. The projection describes the trajectory to the stable population

composition specified by the τj values. Even though the initial population compos-

ition does not influence the ultimate stable composition, it does influence the rates

of transfer. For N > 2, parameter w and the τj do not specify a unique rate matrix.

Different initial population compositions lead to different rate matrices, albeit

matrices with the same dominant right eigenvector.

IL parameter w only influences the level of the transfer rates. As shown in the

following sections, w scales all of the rates and roots (eigenvalues) of MN. Consider

two multistate models with the same initial populations and the same constant τj
values, but with different IL parameters, say w1 and w2, with w1 > w2. The two
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models move to the same ultimate stable values along the same trajectory, but at dif-

ferent speeds, as the model having the larger IL parameter (i.e., w1) moves at a

slower pace. The rates in the two models are proportional. If m (wj) denotes a rate in

the model with parameter wj, then

m w1ð Þ=m w2ð Þ ¼ 1� w1ð Þ= 1þ w1ð Þ½ �= 1� w2ð Þ= 1þ w2ð Þ½ � ð8Þ

The special case of w = 0

Equation (1) indicates that when w = 0, the end of interval population has the same

composition as the stable population implied by the rates prevailing over the inter-

val. That suggests that there are rates which, over the course of a single interval, can

transform an arbitrary initial population into the stable composition implied by

those rates. The existence of such a “dynamically stable” multistate population has

not, to my knowledge, previously been noted in the demographic literature. It merits

a brief discussion.

It is not difficult to show that demographically valid, dynamically stable, multi-

state populations actually exist. Consider a two-state model with interval length 5

where the rates alternate over time. Let the rates during odd-numbered intervals

be m12 (odd) = .24 and m21 (odd) = .16, and during even numbered intervals be

m12 (even) = .16 and m21 (even) = .24. The τ vectors for odd and even periods are

then [0.6, 0.4]′ and [0.4, 0.6]′ respectively, where the prime (′) indicates a trans-

pose. At every time point, the population composition is that of the stable popu-

lation implied by the prevailing rates, and that composition alternates as the rates

alternate.

The assumption of w = 0 is quite strong and would need to be justified in any

analysis. A demographically valid solution may not exist, the projection matrix is

singular, and the transfer rates can be quite high. Nonetheless, unlike birth-death

populations, multistate populations can become dynamically stable. That somewhat

paradoxical finding shows the flexibility of dynamic multistate models and the

complex connections that exist between fixed rate and changing rate models.

The IL solution in the two-state model
An examination of specific models can illuminate the IL-RR approach. When N = 2, the

simplest case, there is only one model to consider. The following diagram

describes the model, where the line indicates a connection between the states and

the two arrowheads indicate that there is movement in both directions. Denoting the

states as 1 and 2, the model has two rates, m12 and m21. There is a two-step solution

with R = 2(N − 1). Knowing w, the initial composition, and one τ (or u) eigenvector

value yields one IL equation, one flow equation, and one eigenvector equation, which

are sufficient to determine the end of interval composition and the two rates.

In this model, the rate matrix, M2, is given by
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M2 ¼ �m12 m21

m12 �m21

� �
ð9Þ

The dominant right (column) eigenvector of M2 can be written u = [1, m12/m21]′, with

the first element of u scaled to one. The subordinate eigenvector of M2 is simply [1, –1]′.

The values in the related τ vector are given by [m21/(m12 +m21), m12/(m12 +m21]′.

With w, the initial population composition, and τ (or u) known, let us denote the

time t rate ratio (and second dominant right eigenvector element) zt by

zt ¼ m12t=m21t ð10Þ

With state 1 omitted, the single IL equation is

f2t ¼ 1� wð Þ zt= 1 þ ztð Þ½ � þ w f2;t�1 ð11Þ

which provides f2t in terms of known values. The flow equation is

f2t ¼ f2;t�1 � n=2ð Þ f2t þ f2;t�1
� �

m21t þ n=2ð Þ f1t þ f1;t�1
� �

m12t ð12Þ

which, with Eq. (10), yields

m21t ¼ 2 1� wð Þ= n 1þ wð Þ 1þ ztð Þ½ � ð13Þ

Equation (10) then provides m12t from Eq. (13). In both rates, [(1–w)/(1 +w)] is a

scaling factor. When N = 2, the rates are independent of the initial population compos-

ition and depend only on n, w, and rate ratio (eigenvector element) zt. With 0 ≤w < 1,

Eqs. (10, 11, and 13) insure that all model values are demographically valid. Equations

(10 and 13) allow parameter w to be expressed solely in terms of rates. In the two-state

model, under the linear assumption, that relationship is

w ¼ 1 � n=2ð Þ m12 þm21ð Þ½ �= 1 þ n=2ð Þ m12 þm21ð Þ½ � ð14Þ

Equation (14) indicates that an increase in either rate decreases w. The smaller the

rates, the closer w is to one, the lower the metabolism, and the slower the convergence

to stability.

Now consider Π2, the transition probability or projection matrix implied by rate

matrix M2. The eigenvectors of the two matrices are the same, but their eigen-

values (roots) differ. The dominant root of M2, r1, is zero, while subordinate root

r2 = –(m12 +m21). The dominant (λ1) and subordinate (λ2) roots of Π2 are 1 and

w. Equality between w and λ2 is consistent with the known relationship between

(λ2/λ1)
2 and the speed of convergence (cf. Schoen 2006, Chap. 2). While parameter

w is defined in quite different terms, Eqs. (1) and (14) shows that, at every time point,

it is inherently a part of the basic structure of the N = 2 model’s projection matrix.

As the N = 2 model is relatively simple, every two-state model satisfies the IL relation-

ship in Eq. (1). Given any m12, m21, the projection matrix they imply, and an initial popu-

lation, Eq. (1) is satisfied when w = λ2. For w to remain constant over time, (m12 +m21)

must be a constant. However, when N ≥ 3, a given set of rates will generally not yield a

projection matrix consistent with Eq. (1), as states need not move toward their stable

proportions in a uniform manner.

IL-RR in three-state models
When N = 3, five different models arise. Let us consider each in turn.
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The N = 3, R = 3 (ring) model

Let the three rates be m12t, m23t, and m31t. We then have the simple “ring” model shown

in Fig. 1a. The number of additional constraints needed, including eigenvector elements,

is Nz = (R–N + 1) = 1. The dominant right eigenvector is [1, m12t/m23t, m12t/m31t]′. Now

let z1t =m12t/m23t and z2t =m12t/m31t. The one additional constraint available cannot

specify both eigenvector elements, a consequence of R < 2(N–1). A one-step solution is

thus necessary.

Omitting state 1, the two IL equations are

a)  N = 3, R = 3 (ring) model

3

1                2

b) N = 3, R = 4 (path) model

1               2              3

c) N = 3, R = 4 (triangular) model

1

2 3

d) N = 3, R = 5 model

1

2                             3

e) N = 3, R = 6 (full) model

1

2                             3
Fig. 1 Diagrams of the five types of multistate models with three states
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f2t ¼ 1–wð Þ z1t= 1þ z1t þ z2tð Þ½ � þ w f2;t–1

f3t ¼ 1–wð Þ z2t= 1þ z1t þ z2tð Þ½ � þ w f3;t–1

ð15Þ

and the two flow equations are

f2t ¼ f2;t�1 � n=2ð Þ f2t þ f2;t�1
� �

m23t þ n=2ð Þ f1t þ f1;t�1
� �

m12t

f3t ¼ f3;t�1 � n=2ð Þ f3t þ f3;t�1
� �

m31t þ n=2ð Þ f2t þ f2;t�1
� �

m23t

ð16Þ

With one known z value, each interval involves a system of five equations with five un-

knowns, i.e., the other z value, two end of interval populations, and two rates. Algebraically,

the solution is a complicated quadratic. Numerically, there are two possible solutions for

the rates, one associated with λ2, and one associated with λ3, the smaller subordinate root of

the projection matrix. There may be one, two, or no demographically valid solutions. Add-

itional file 1 provides an annotated Maple program that calculates an R = 3 Ring model.

The N = 3, R = 4 (path) model

In “path” models, states can directly connect only to an immediately preceding and an

immediately following state. Consider the path model with rates m12, m21, m23, and

m32, shown in Fig. 1b. States 1 and 2 and states 2 and 3 directly communicate, but

there is no direct connection between states 1 and 3. Here, (R–N + 1) = 2, and the two

eigenvector elements suffice to identify the model. The dominant right eigenvector of

M3 is [1, (m12t/m21t), (m12t/m21t) (m23t/m32t)]′, suggesting the rate ratios z1t =m12t/m21t

and z2t =m23t/m32t. The IL and flow equations follow as before.

With parameter w, initial population composition, and the τ vector (or the two z

values) known, a two-step solution is straightforward. In the first step, IL equations par-

alleling Eqs. (1–3) can be used to find the population trajectory as far into the future as

the zt values allow. In the second step, the rates in any time interval can be determined

from the flow equations. The rates are given by

m21t ¼2 1� wð Þ f2;t�1 � f3;t�1
� �

1þ z1t þ z1tz2tð Þ � z1t 1þ z2tð Þ� �
n 1þ wð Þ 1þ z1t þ z1tz2tð Þ ½ f2;t�1 1þ z1tð Þ � z1t 1� f3;t�1

� �� �

m32t ¼
2 1� wð Þ z1tz2t � f3;t�1 1þ z1t þ z1tz2tð Þ� �

n 1þ wð Þ 1þ z1t þ z1tz2tð Þ z2tf2;t�1 � f3;t�1
� �

ð17Þ

with m12t and m32tfollowing immediately from the rate ratios. Note that the factor

(1 − w)/(1 + w) appears in Eq. (17). Numerically, w is a subordinate root of the pro-

jection matrix associated with path rate matrix M3. The solution is unique, though

not necessarily demographically valid. Additional file 1 provides an annotated

Maple program that calculates a three-state path model.

The N = 3, R = 4 (triangular) model

In the triangular model, the rates are m12, m23, m31, and m32, as shown in Fig. 1c. Here,

the “path” of the previous model is replaced by a “cycle”, in that a person can start in

state 1, move to state 2 and then state 3, and return to state 1 without ever being in

another state twice. The dominant right eigenvector is [1, m12 (m31 +m32)/(m31m23),

m12/m31]′. Constituent rate ratios are z1 =m12/m31 and z2 = (m31 +m32)/m23.
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With the trajectory of zjt values known, the two-step approach can be applied as

described above. The solutions are unique, and w is a subordinate root of the projec-

tion matrix.

The N = 3, R = 5 model

A multistate model with three states and five rates is depicted in Fig. 1d, with rates

m12, m13, m21, m23, and m31. With Nz = (R −N + 1) = 3, the two eigenvector elements

are not enough to determine the rates. A further constraint, such as a rate ratio, is

needed. Now assume known rate ratios z1 = (m21 +m23)/m12, z2 =m23/m31, and z3 =

m13/m31. The dominant right eigenvector of the rate matrix is then [z1, 1, z2 + z1z3]′.

The two-step approach is applicable, the solutions are unique, and w is a subordinate

root of Π3.

The N = 3, R = 6 (full) model

All possible interstate moves can be made with six nonzero transfer rates (see Fig. 1e).

Here, Nz = (R −N+ 1) = 4, so two additional constraints beyond the eigenvector

elements are needed. With an additional rate, the dominant right eigenvector is more

complicated. Now let

u2 ¼ m12 m31 þm32ð Þ þ m13m32ð Þ= m31 m21 þm23ð Þ þ m21m32½ �
u3 ¼ m23 m12 þm13ð Þ þ m13m21ð Þ= m31 m21 þm23ð Þ þ m21m32½ � ð18Þ

The dominant right eigenvector is then [1, u2, u3]′. Note that dominant right eigen-

vector elements of the other three-state models can be found from Eq. (18), with zero

values entered for transfers that are not allowed.

Here, and whenever R ≥ 2(N − 1), a two-step solution can be found from the (N − 1)

known τj values and an additional (R − 2(N − 1)) constraints obtained from rate ratios

or other sources. Algebraically, the solutions of the full model are complicated. Numer-

ically, they yield two solutions, neither of which may be demographically valid. Param-

eter w is once again a subordinate root of the projection matrix, and its value

proportionally adjusts all rates.

IL-RR in models with more than three states
With four or more states, the number of distinct multistate models increases greatly, as

does the range of interstate movements and the complexity of the elements of the

dominant right eigenvector. The Appendix presents an algebraic method for finding

dominant right eigenvector elements and gives the eigenvector elements of the full

four-state model. The solution approaches described above remain applicable. If param-

eter w, initial population values, and (R –N + 1) additional constraints are known,

numerical solutions for the ending populations and transfer rates can always be found.

If R ≥ 2(N − 1) and the τjt are known, a two-step solution with an immediate population

projection is possible.

IL-RR models from a graph theory perspective
Graph theory affords some insight into when unique, two-step projections can be

made. There are close parallels between graphs and multistate models, though they

have not been well explored from a demographic perspective. We have already used
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the graph theory concepts of path and cycle. Another useful concept is that of

“tree”, a connected graph with no cycles (Chartrand and Zhang 2012; Rebane and

Pearl 1987). In demographic terms, a tree describes a strictly hierarchical multi-

state model. There is one tree in two- and three-state models, the path model. In

four-state models there are two trees, the path and “Y” forms, the latter where di-

agrams of the connections between states resemble the letter Y. When N = 5,

there are three trees, the path, the Y, and the “star”, the latter having four states

that connect directly to the fifth state. The number of tree forms increases with

N, as six-, seven-, and eight-state models have 6, 11, and 23 distinct forms,

respectively (Chartrand and Zhang 2012; Rebane and Pearl 1987). Each tree has

(N − 1) links. Now assume that each link represents two rates, one in each direc-

tion. Every such modified tree can be interpreted as an acyclic multistate model

with 2(N − 1) rates. All such tree-form models are fully soluble by the two-step

IL-RR approach when the τj values are known.

IL-RR in N-state tree-form (acyclic) models

We examine patterns in three kinds of tree-form models: the path, the Y, and the star.

The N-state path model

An N-state path model can be described by 2(N − 1) rates, specifically by the pairs (m12,

m21), (m23,m32), (m34, m43),… (mN – 1,N,mN,N– 1). A five-state model is depicted in Fig. 2a.

The dominant right eigenvector has the form [1, (m12/m21), {(m12/m21) (m23/m32)},…,

{(m12/m21)(m23/m32)(m34/m43),…, (mN – 1,N/mN,N – 1)}]′. With parameter w, initial com-

position, and (R −N + 1) = (N − 1) known τj values, the two-step approach yields a unique

solution, and w equals a subordinate root of the projection matrix.

N-state Y and star models

A seven-state Y model is shown in Fig. 2b, and a nine-state star model in Fig. 2c. To write

the dominant right eigenvector of those models, let us make state 1 the reference state

and scale it to 1. Because, we have tree-form models, there is only one route between the

reference state and every other state. As was the case in the N-state path model above, the

jth eigenvector element is the product of the rate ratios that trace out the route from state

1 to state j. For example, in the Y model, the fourth element of the eigenvector is the

product {(m12/m21)(m23/m32)(m34/m43)}. An analogous string of rate ratios provides every

eigenvector element. As in the generalized path model, with (N–1) known τj values, the

two-step approach provides a unique solution, and w equals a subordinate root of the

projection matrix.

In short, in generalized acyclic (or tree-form) models, a single-route links every pair

of states. Given w, initial population composition, and (N − 1) τj values, the two-step

approach provides the complete N-state model.

IL-RR in two N-state cyclic models with R = 2(N − 1)

The two-step approach can also lead to a complete solution in some N-state cyclic

models when there are R = 2(N − 1) nonzero rates. In this section, two such models are

presented.
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N-state “add-on” models

An “add-on” model with five states is shown in Fig. 3a. The first three states have the

form of a triangular model. Any number of additional states can then be added. State 3

connects to new state 4, which also has a direct path back to state 1, and so on.

In an add-on model with N states, it is convenient to make the (N − 1)st state the ref-

erence state, and scale it to 1 in the dominant right eigenvector. Then the Nth element

of the eigenvector is (mN – 1,N/mN1). The eigenvector element for state j, j < (N − 1), has

a rate ratio factor for each state in the route from j to the reference state. Specifically

N� 2ð Þd element :
mN�1;1 þ mN�1;N
� �

mN�2;N�1
ð19Þ

N� 3ð Þd element :
mN�2;1 þ mN�2;N�1
� �

mN�3;N�2
:
mN�1;1 þ mN�1;N
� �

mN�2;N�1
ð20Þ

First element :
m21 þ m23ð Þ

m12
:
m31 þ m34ð Þ

m23
…

mN�1;1 þ mN�1;N
� �

mN�2;N�1
ð21Þ

With (N − 1) known τj values, the complete model follows via the two-step approach.

a)  A 5-state path model

1      2                       3 4                      5  

b) A 7-state Y model 
6                     7

1                      2                      3                        4                     5  

c) A 4-spoke star model with 9 states

7

6

1                     2        3                     4                     5 

8

9
Fig. 2 Diagrams of three N-state tree-form models. Note: In Panel a, states can be added to the left of state 1
and to the right of state 5. In Panel b, states can be added to the left of state 1 and to the right of states 5 and
7. In Panel c, all four spokes can be extended, and additional spokes can be connected to central state 3
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N-state “sawtooth” models

A “sawtooth” model with seven states is depicted in Fig. 3b. As in the add-on model,

the first three states have the form of a triangular model. Then any number of pairs of

states can be added, with the odd-numbered states along the bottom row constituting a

path model, and the even numbered states (the “teeth”) receiving increments from the

previous odd-numbered state and sending decrements to the next odd-numbered state.

In a sawtooth model with N states, it is convenient to make the first state the refer-

ence state, and scale it to 1 in the dominant right eigenvector. Now, define the (N − 1)

rate ratios

Sj ¼ m2j�1;2j=m2j;2jþ1 ð22Þ

Fj ¼ m2j�1;2j þ m2j�1;2jþ1
� �

=m2jþ1;2j�1 ð23Þ

The dominant right eigenvector is then [1, S1, F1, F1S2, F1F2, F1F2S3, F1F2F3, …]′, and

the complete multistate model follows from the two-step approach.

Finding an appropriate value for parameter w
Because of parameter w’s pivotal role in IL models, it is important to use an appropriate

value. As indicated above, w reflects the metabolism of the population, and the factor

(1 −w)/(1 +w) scales all rates. If comparable rates are known or can be estimated for a

similar population, an appropriate value of w is the largest subordinate root of the pro-

jection matrix associated with that rate matrix.

“Pattern” or “design” matrices can help illuminate the relationship between w and a

set of transfer rates. For simplicity, and because the level of the rates is a key factor, let

us assume that all of the transfer rates are equal to m. We can then construct a “pat-

tern” rate matrix in the form of Eq. (4), reflecting the state space and possible flows in

the multistate model of interest. An approximation for w is the λ2 of the associated

projection matrix.

a) A 5-state add-on model

1

2                        3                       4                        5   

b) A 7-state sawtooth model

2 4 6

1 3                          5                      7
Fig. 3 Diagrams of two cyclic multistate models
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Table 1 shows values of w in terms of uniform rate m for some of the multistate

models we have considered. In every case, the larger the value of m, the smaller the w.

Unless m > 0.10, parameter w is usually 0.8 or larger. That is consistent with the typic-

ally slow convergence found in multistate models. In general, the more states the larger

the value of w. Path models, where movement is quite restricted, have larger w values

than triangular or Y models. Although a uniform rate pattern matrix only approximates

w, it can be refined by weighting the rates using information about the population and

behavior being studied.

Two hypothetical model calculations
To show how the IL-RR approach is useful in modeling multistate population dynam-

ics, we consider two applications: a population projection over five time intervals, and

a model of a rural-to-urban transition.

A hypothetical population projection in a three-state path model

Consider a three-state model of how members in a certain trade participate in their

trade association. Individuals can be in the membership states of unaffiliated (U), joined

(J), or active (A). As shown in the diagram below, persons can move freely between

states U and J and between states J and A, but there is no direct connection between

states U and A.

Table 2 presents a five-interval projection, from time 0 to time 5, for that model

population. Time 0 population fractions are fU0 = 0.85, fJ0 = 0.10, and fA0 = 0.05. Interval

length n = 5 and parameter w = 0.8, indicate modest turnover. The dominant right

eigenvector can be written in terms of two rate ratios. The first, z1 =mUJt/mJUt = 0.20

for all five intervals. The second, z2t =mJAt/mAJt, is 0.70 during the first interval, and in-

creases linearly to 0.74 in the fifth interval.

Panel A of Table 2 shows an interval by interval population projection. The fraction

of the population in state A increases steadily over time. However, transfer rate mJAtde-

creases during the projection, though not as rapidly as mAJt decreases. Rates mUJt and

mJUt both increase while maintaining a constant ratio (i.e., z1), and the fraction in state

J rises steadily. At time 5, a comparison with panel B shows that the model population

is still some distance from the stable population implied by the prevailing rates. If the

Table 1 Values of parameter w in selected multistate models with all transfer rates equal to m and
interval lengths equal to 1

Largest subordinate root of Value of w when m is

Model form Rate matrix (r2) Projection matrix (λ2) .05 .10 .20

N = 2 path –2m (1–m)/(1 +m) .905 .818 .667

N = 3 path –m (2–m)/(2 +m) .951 .905 .818

N = 3 triangular, 5-rates –2m (1–m)/(1 +m) .905 .818 .667

N = 3 full –3m (2–3m)/(2 + 3m) .860 .739 .538

N = 4 path −m 2−√2
� �

2þ2m√2�m2

2þ4mþm2 .971 .943 .889
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time 5 rates remain constant, the fractions in J and A will continue to rise and the frac-

tion in U will continue to drop. Here, w = λ3.

Panel C of Table 2 shows population values for time 5 calculated directly from Eq. (2),

without an interval by interval projection. The results confirm that Eq. (2) yields the same

time 5 population composition as the five single-interval projections shown in panel A.

The ability to project over multiple intervals is a major strength of the IL-RR approach. If

information is available over age instead of time, Eqs. (1) and (2) can be used to immedi-

ately trace out the age trajectory of a real or synthetic cohort.

A two-state model of urbanization

Figure 4 depicts a hypothetical urban transition, showing a population going from 90%

rural (R) to 90% urban (U). The behavioral transition, i.e., the period over which the

rates of transfer are changing, spans 80 years or 16 5-year intervals. IL parameter w is

set at 0.7, a figure consistent with substantial transfer rates and a relatively fast conver-

gence to stability.

We start with a time 0 population that is assumed to be stable. With transfer

rates mRU and mUR, the implicit stable population composition is [mUR/(mRU +

mUR), mRU/(mRU +mUR)]′. From those τ values and Eqs. (10) and (13), initial rate

ratio z0 is given by

z0 ¼ mRU=mUR ¼ fU0=fR0 ¼ :1=:9 ¼ :1111 ð24Þ

The time 0 stable rates are mRU = .0071 and mUR = .0635. Rates at time 16 and after

follow from z16 = .9/.1 = 9, with ultimate stable rates mRU = .0635 and mUR = .0071.

In a two-state IL model, a constant w implies that (mRU +mUR) is fixed (cf.

“The IL solution in the two-state model” section); hence, a change in one rate

must be offset by an equal and opposite change in the other. Given the nature

of the τ vector, a linear increase in mRU, counterbalanced by a linear decrease in

mUR, produces a linear increase in the stable proportion urban and a

Table 2 A 5-interval projection in a hypothetical three-state (path) membership model with states
unaffiliated (U), joined (J), and active (A)

Fraction in state (f) z2t Rates of transfer (Eqs. (20)–(21))

Time U J A mUJ mJU mJA mAJ

A. Interval by interval calculations (Eq. (1))

0 .85 .10 .05 – – – – –

1 .82925 .10985 .06090 .70 .01317 .06586 .08474 .12106

2 .81243 .11769 .06988 .71 .01335 .06674 .08291 .11678

3 .79876 .12391 .07733 .72 .01357 .06785 .08026 .11147

4 .78759 .12885 .08356 .73 .01384 .06921 .07698 .10545

5 .77844 .13275 .08881 .74 .01419 .07093 .07318 .09890

B. Stable population values (τj5) implied by time 5 rates

5 .74184 .14837 .10979

C. Time 5 values calculated directly from time 0 populations and z values (Eq. (2))

5 .77844 .13275 .08881

Notes: Fixed values are w = 0.8, n = 5, and z1 =mUJ/mJU = 0.20. Rate ratio z2t =mJAt/mAJt increases as shown above. Stable
population proportions are τ2t = z1/(1 + z1 + z1 z2t), τ3t = z1 z2t/(1 + z1 + z1z2t)
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corresponding decrease in the stable proportion rural. Between times 0 and 16,

we therefore let the mRU and mUR schedules change linearly, though in opposite

directions. The rate ratios follow from the rates, whose sum remains constant at

0.0706.

At each time point, the model proportions urban and rural can be found from

Eqs. (1–3). During the transition, the model proportions urban lag behind the

implied stable proportions. At time 8, halfway through the behavioral shift, the

implied stable proportion urban is 50%, while the model is 39% urban. After

80 years, when the ultimate rates are in place, the model population is 78%

urban as opposed to the stable figure of 90%. With w = 0.7, the model population

is close to stability after 125 years, with an urban proportion of 89.5%. A larger

w would lead to a longer stabilization time, though the overall dynamics would

be similar.

IL as an estimation method
To this point, the focus has been on how the Intrinsic Linkage-Rate Ratio approach can be

used to find multistate population trajectories and their underlying behavioral rates. Now,

we apply the same methodology to estimate rates of transfer when the populations at the

beginning and end of an interval are known. The IL-RR approach adds to presently exist-

ing estimation procedures, such as IPF (iterative proportional fitting) (Bishop et al. 1975;

Willekens 1982) and QERT (quadratic estimation of rates of transfer) (Schoen 2015).
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Fig. 4 a Proportions in the Urban (U) and Rural (R) States During the Transition, and the Stable Population
Proportion Urban (S) Implied by Prevailing Rates b Rates of Transfer to the Urban (mRU) and Rural (mUR) States,
and Rate Ratio zt
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The IL estimation procedure

The advantage of IL-RR is its ability to provide not (N–1) but 2(N–1) population-based

constraints on the transfer rates. Hence, when parameter w and the populations at the

beginning and end of an interval are known, 2(N–1) transfer rates can be found. Add-

itional rates can be estimated if more information is available in any form, including

rate ratios, rate products, cross-product ratios, or observed rates.

The estimation procedure is straightforward. The (N–1) IL equations, (N–1) eigen-

vector element equations, and (N–1) flow equations, along with any needed supple-

mentary equations, are simultaneously solved for the (N–1) τj values and the transfer

rates. Multiple solutions typically arise, and a demographically valid solution is not as-

sured. If the number of rates to be found is less than 2(N–1), IL equations can be

dropped or combined. The manner in which the IL equations are consolidated does

not affect the rate estimations, as long as w is a subordinate root of the implied projec-

tion matrix. When R < 2(N–1), results may be quite sensitive to input values. If no

demographically valid solution is found, a different value for parameter w should be

considered.

Explicit solutions for the transfer rates are feasible in some cases. In the two-state

model, the IL and flow equations yield the solutions

m12t ¼ f2t � w f2;t�1
� �

= n=2ð Þ 1þ wð Þ½ �
m21t ¼ f1t � w f1;t�1

� �
= n=2ð Þ 1þ wð Þ½ �

ð25Þ

In the three-state path model, the four transfer rates are

m12t ¼ f2t � w f2;t�1
� �

f2t � f2;t�1
� � þ f3t � f3;t�1

� �� �
=D12

m21t ¼ f1t � w f1;t�1
� �

f2t � f2;t�1
� � þ f3t � f3;t�1

� �� �
=D12

m23t ¼ f3t � w f3;t�1
� �

f3t � f3;t�1
� �

= n=2ð Þ 1þ wð Þ f2;t�1f3t � f2tf3;t�1
� �� �

m32t ¼ f2t � w f2;t�1
� �

f3t � f3;t�1
� �

= n=2ð Þ 1þ wð Þ f2;t�1f3t � f2tf3;t�1
� �� �

ð26Þ

where D12 = (n/2) (1 +w) [f2t (1 – f3,t–1) – f2,t–1 (1 – f3t)]. In the estimations, the effects

of parameter w are no longer separable from compositional effects.

Evaluating the IL-RR rate estimates

To evaluate the IL-RR estimates relative to other methods, let us begin with the N = 2

case. In the two-state projection matrix, subordinate root λ2 is a constant and equals

parameter w. The subordinate root of rate matrix M2, i.e., r2, equals –(m12 +m21). It fol-

lows from Eq. (14), that r2, the sum of the rates, is fixed. In contrast to that constant sum

constraint in IL-RR, the QERT estimating approach fixes the product of m12 and m21.

With more states, the subordinate roots of the rate and projection matrices become

more complicated. In the three-state path model,

r2;3 ¼ � n=2ð Þ m12 þ m21 þ m23 þ m32½ � � n=2ð Þ√Z ð27Þ

where r2 takes the positive root, and

Z ¼ m12 þ m21ð Þ2 þ m23 þ m32ð Þ2 þ 2m23 m21 � m12ð Þ � 2m32 m12 � m21ð Þ

In a rough nonlinear way, r2 and r3 are again constrained by the sum of the transfer rates.
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In two-state models, the IL-RR sum constraint does not appear to perform quite as

well as the product constraint in QERT or the constant cross-product ratio relationship

in IPF. In a comparison paralleling Table 1 of Schoen (2015), the QERT and IFP

approaches both had percent errors in estimating m21 of 0.5, –5.5, and –10.2. The

corresponding IL-RR estimates had percent errors of –4.3, –7.8, and –10.7.

Objective comparisons are more difficult to make when there are more than two

states. For example, in an N-state model with 2(N − 1) rates, IL-RR requires only one

parameter, w, while QERT requires the values of (N–1) products and IPF needs values

for (N − 1) cross-product ratios. When good estimates of the requisite parameters are

available, QERT or IPF may have an advantage, but IL-RR and its single parameter may

be useful in situations where R = 2(N – 1) or when information is more limited.

An illustrative IL-RR rate estimation: voting behavior

There are a number of areas of demographic interest where multistate population data

are available from censuses or surveys, but where rates of interstate transfer are hard to

obtain. Here, we look at one such area, voting behavior, which has long been of interest

to social scientists. For some time, the U.S. Census Bureau, through the November

Current Population Survey, has been asking adult citizens whether they have voted.

Using those data, Land et al. (1986) constructed and analyzed two-state (voting/nonvot-

ing) life tables for the U.S. Presidential elections of 1972, 1976, and 1980.

Here, we consider elections for U.S. President and members of Congress. There is a

consistent pattern of higher voter turnout in Presidential election years (2004, 2008,

etc.) than in years when there are only Congressional elections (2002, 2006, etc.).

Assume that those who voted in a given Congressional election year also voted in the

previous Presidential election. Then, data on voting in the immediately past

Congressional election can be used to classify persons by three voting statuses: voted in

the last (Congressional) election (L), did not vote in the last election but voted within

the last 4 years (P), and has not voted in the last 4 years (N).

The result is a three-state triangular model, as indicated by the diagram

The four transfer rates are mLP, mPL, mPN, and mNL. There are 4 errors in the

subscripts in the bracketed expression. It [(mPL +mPN)/mLP, 1, mPN/mNL]′. The

two-step solution for the rates from the two IL, two τj, and two flow equations is

straightforward. Numerically, the solution is unique, but not necessarily valid

demographically.

Table 3 shows results for the 2002–06 and 2006–10 periods, with parameter w set at

0.8 to allow a fair amount of turnover. Additional file 1 provides a Maple program that

carries out the calculations for the 2002–06 interval. The proportion of persons voting

in the last (Congressional) election is steady at about 40%. The proportions only voting

in the last Presidential election vary a bit more, from 15 to 21%. The modest changes

in population proportions between 2002–06 and 2006–10 are matched by the modest
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changes in the transfer rates. All of the rates are rather small. Consistent with Land et

al. (1986), Table 3 thus suggests that there are “voters” and “nonvoters”, with limited

movement between those groups.

Summary and conclusions
Intrinsic Linkage-Rate Ratio models afford a new approach to multistate modeling,

facilitating the projection of multistate populations with changing rates and the

estimation of interstate transfer rates from adjacent population data. The IL-RR

approach exploits the connections between model population composition, trans-

fer rates, and the composition of the stable population implied by those rates. By

definition, IL parameter w weights the compositions of the beginning of interval

and ultimate stable populations to yield the end of interval population

composition. Analysis shows that w is also a subordinate root of the associated

population projection matrix.

In analyzing multistate models with N states, there are (N − 1) IL equations like Eq.

(1) and (N − 1) flow equations like Eq. (5) that describe the movements between states.

With R nonzero transfer rates, if parameter w and the initial population composition

are known, (R −N + 1) additional constraints must be available to determine the end of

interval composition and the R rates.

The (N − 1) independent elements of the dominant right eigenvector of the rate

matrix, or the τj values, are functions of the rates. If R ≥ 2(N − 1) and the eigenvector el-

ements are expressed in terms of rate functions, a “two-step” solution is possible. In

step one, the population can immediately be projected as far into the future as the τj
values extend because, under intrinsic linkage, the τjt values shape future population

composition. In step two, the transfer rates are found. The IL-RR approach can deter-

mine 2(N − 1) transfer rates; if R = 2(N − 1), solutions can be found for models with any

number of states. If R > 2(N − 1), the additional rates can be found using information

from any available source. Simple ratios of rates can provide the needed constraints.

The effects of parameter w are separable from those of the τj values. Parameter w de-

termines the level of all transfer rates, and hence reflects the population’s metabolism

or speed of convergence to stability. When w = 0, the model immediately stabilizes,

Table 3 Estimated rates of transfer between voting statuses in the USA, 2002–06 and 2006–10,
from a three-state (triangular) model

Proportion in state

Year Voted in the last
Congressional
Election (L)

Did not vote in last election;
voted within the last 4 years (P)

Has not voted in the
last 4 years (N)

2002 .395 .147 .458

2006 .404 .197 .399

2010 .410 .206 .384

Transfer rates mLP mPL mPN mNL

2002–06 .0598 .0494 .0169 .0412

2006–10 .0493 .0472 .0412 .0308

Notes: IL parameter w = 0.8. Interval length n = 4
Source: Calculated as described in text from November 2002–2010 Current Population Surveys (U.S. Census Bureau, 2002-2010),
Table 2, Reported Voting and Registration by Race, Hispanic Origin, Sex, and Age, for the United States. Downloaded March 8,
2016 from census.gov/hhes/www/socdemo/voting/publications/p20
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leading to a previously unrecognized phenomenon: a “dynamically stable” population

(i.e., a changing rate population whose composition at every time point reflects the

stable composition implied by the prevailing rates).

The IL-RR approach provides a new method for rate estimation when initial and end

of interval populations are known. In N-state models, intrinsic linkage provides (N − 1)

new constraints on the transfer rates. Thus, the IL and flow equations allow 2(N − 1)

transfer rates to be determined from a single parameter, w. The rate estimates are sen-

sitive to the choice of w, but a reasonable parameter value can usually be found from

the nature of the model and the likely level of the rates.

The IL-RR approach opens new lines of research on multistate models with changing

rates. Further analyses of IL-RR model relationships are in order, including the develop-

ment of additional ties to graph theory. Future work can explicitly incorporate mortal-

ity and fertility and recognize multiple ages as well as states. An extension allowing

parameter w to vary over time/age may enhance cohort analyses.

The present results show that intrinsic linkages embody important demographic rela-

tionships, connecting population composition, transfer rates, and the stable populations

implied by those rates. In multistate contexts, they provide useful new tools for analyt-

ical projections and rate estimation.

Appendix 1
An Introduction to Eigenstructure

This brief, simplified overview is to introduce readers to the eigenstructure decompos-

ition used in the text. Caswell (2001, Appendix A) provides an excellent short introduc-

tion to matrix algebra for those wanting a more complete discussion. Good matrix

algebra texts are Franklin (1968) and Gantmacher (1959).

Matrices are ordered arrays, such as rate matrix MN of Eq. (4). The element in row i

and column j is the (i,j) th element. Let M be any N ×N matrix that is non-singular,

i.e., that can be inverted. The inverse of M, denoted M−1, is the matrix for which

I ¼ M�1M ¼ M M�1 ð28Þ

where I is the identity matrix, an N ×N matrix with ones on the main diagonal (the

elements where i = j) and zeros elsewhere. Any N ×N matrix, all of whose elements off

the main diagonal are equal to zero, is called a diagonal matrix. Inversion is the matrix

algebra analog to division, and Eq. (27) indicates that a matrix divided by itself yields a

diagonal matrix of ones. A matrix transpose, denoted M′, is the matrix whose (j,i) th

element is the (i,j) th element of M.

Matrices like M can be uniquely decomposed into eigenvalues (roots) and eigenvec-

tors. Specifically, with rate matrix M,

M¼U R U�1 ð29Þ

Matrix R is a diagonal matrix whose diagonal elements are the eigenvalues of M. By

convention, the (1,1) element of R is the dominant eigenvalue, whose magnitude ex-

ceeds that of all the other roots. The (2,2) element is the second largest root, and so

on. The elements of R are the roots r that satisfy the equation
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0 ¼ │M� rI │ ð30Þ

where the vertical bars indicate a determinant, i.e., a scalar value associated with (M – r I).

The determinant in Eq. (30) gives rise to an Nth degree polynomial equation in r, and the

eigenvalues are the roots of that polynomial equation.

Each column of N ×N matrix U represents the relative state composition of one

component of M. By convention, the first element in each column is scaled to one. The

left-most column of U, denoted by N-element column vector u1, (or simply u) is associ-

ated with the dominant root and has all positive elements. Vector (or N × 1 matrix) u

describes the state composition of the stable population that would arise if the rates in

M persisted indefinitely. The second column of U, u2, is associated with the largest

subordinate root, and so on. Matrix U is called the right eigenvector matrix because

each column of U satisfies the basic equation

rjuj ¼ M uj ð31Þ

for each j, 1 ≤ j ≤N.

The associated N ×N projection matrix, Π, has a similar eigenstructure decompos-

ition. The projection matrix associated with rate matrix M can be written

Π¼U Λ U�1 ð32Þ

in terms of the same U matrix that appears in Eq. (29). Diagonal matrix Λ has dominant

root λ1 as its (1,1) element. Subordinate λ’s, in order of magnitude, are the successive diag-

onal elements. With the projection matrix, basic eigenstructure Eq. (31) becomes

λ1u1 ¼ Π u1 ð33Þ

Equation (33) describes the basic stable population projection relationship, where

projection of stable population u1 by matrix Π is equivalent to multiplying every elem-

ent of u1 by stable growth rate λ1.

In most cases, eigenvalues and eigenvectors are most conveniently found using math-

ematical software such as Maple or Mathematica. Here, with rate matrix MN of Eq. (4),

the calculation of the dominant right eigenvector from Eq. (31) simplifies. The largest

root of MN, r1, is zero because all of the columns of MN sum to zero. Thus, Eq. (31)

for the dominant right eigenvector of MN becomes

0 ¼ MNu1N ð34Þ

where 0 is an (N × 1) matrix of zeros and u1N, the dominant right eigenvector of MN, is

given by [1, u2, u3, …, uN]′. Since MN has (N − 1) independent rows, Eq. (34) yields

(N – 1) scalar equations that can provide the uj, 1 < j ≤N, in terms of the rates. Since

those (N − 1) equations are linear, the solutions for the uj are real, non-negative, and

unique (given the first element scaled to 1).

To illustrate the procedure, let us find the dominant right eigenvector of M4 when all

transfers are possible. Dropping the first row of M4 to have (N − 1) independent equa-

tions, we can write the matrix equation

Schoen Genus  (2017) 73:8 Page 22 of 24



0
0
0

2
4

3
5 ¼

m12

m13

m14

�m21 �m23 �m24

m23

m24

m32

�m31 �m32 �m34

m34

m42

m43

�m41 �m42 �m43

2
4

3
5

1
u2
u3
u4

2
664

3
775

ð35Þ

Solving Eq, (35), the dominant right eigenvector elements of M4 are given by

u2 ¼ �
m12 m31 þ m32ð Þ m41 þ m42 þ m43ð Þ þ m34 m41 þ m42ð Þ½ �

þ m13 m32 m41 þ m42 þ m43ð Þ þ m34m42½ �
þ m14 m42 m31 þ m32 þ m34ð Þ þ m32m43½ � g=DEN4

u3 ¼ �
m13 m21 þ m23ð Þ m41 þ m42 þ m43ð Þ þ m24 m41 þ m43ð Þ½ �

þ m12 m23 m41 þ m42 þ m43ð Þ þ m24m43½ �
þm14 m43 m21 þ m23 þ m24ð Þ þ m23m42½ � g=DEN4

u4 ¼ �
m14 m31 þ m34ð Þ m21 þ m23 þ m24ð Þ þ m32 m21 þ m24ð Þ½ �

þ m12 m24 m31 þ m32 þ m34ð Þ þ m23m34½ �
þ m13 m34 m21 þ m23 þ m24ð Þ þ m24m32½ � g=DEN4

DEN4 ¼ m21 m31 þ m32ð Þ m41 þ m42 þ m43ð Þ þ m34 m41 þ m42ð Þ½ �
þ m23 m31 m41 þ m42 þ m43ð Þ þ m34m41½ �
þm24 m41 m31 þ m32 þ m34ð Þ þ m31m43½ �

ð36Þ

Equation (36) can provide the dominant right eigenvector elements for all four-state

models. If one or more transfers are not allowed, those rates should be set equal to zero

in Eq. (36).
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Additional file 1: Illustrative calculations of IL-RR models. (PDF 300 kb)
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