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Abstract

Demographic thought and practice is largely conditioned by the Lexis diagram, a
two-dimensional graphical representation of the identity between age, period, and
birth cohort. This relationship does not account for remaining years of life, total length
of life, or time of death, whose use in demographic research is both underrepresented
and incompletely situated. We describe an identity between these six demographic
time measures and describe the sub-identities and diagrams that pertain to this
identity. We provide an application of this framework to the measurement of late-life
morbidity prevalence. We generalize these relationships to higher order identities
derived from an arbitrary number of events in calendar time. Our examples are based
on classic human demography, but the concepts we present can reveal patterns and
relationships in any event history data, and contribute to the study of human or
non-human population dynamics measured on any scale of calendar time.
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Introduction
In the course of training, all demographers are introduced to the Lexis diagram, a con-
venient graphical identity between the three main time measures used to structure
demographic stocks and flows: age, period, and birth cohort. This representation does
not account for time of death, time until death, or length of life, which may be of interest
to researchers as structuring rather than latent variables in order to capture variation in
demographic data.
We wish to draw attention to three time indices that are complementary to age (A),

period (P), and birth cohort (C). The first such index is time to death, which we refer to as
“thanatological age” (T) in contrast to “chronological age” (A). The second index is death
cohort (D), which groups all individuals (of different ages) dying in the same time period.
Finally, lifespan (L) or individual age-at-death itself is an index by which data may be
structured. We therefore have six time measures in total to relate. We call thesemeasures
of demographic time because each, except period, depends on the timing of birth, death,
or both.
The Lexis diagram can be understood as an APC plane that relates age, period, and

birth cohort. Other such planes are also identifiable. The “thanatological dual” of APC is
an identity between thanatological age, period, and death cohort, TPD. A third identity
relates thanatological age, chronological age, and lifespan, TAL. A fourth identity relates
lifespan, birth cohort, and death cohort, LCD. Each of these four “triad identities” (APC,
TPD, TAL, and LCD) is sufficiently described by any two of its constituent indices. For
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instance, if the exact age of an individual at a particular time is known, the birth cohort
to which he or she belongs can be immediately derived. Each of these four identities also
lacks a major dimension of time. The TAL identity lacks calendar time, the LCD identity
is ageless, APC lacks an endpoint in time, and TPD lacks a starting point in time. To our
knowledge, the only triad identity that has received serious treatment at the time of this
writing is the APC identity. Different aspects of the APC identity have been discussed
since at least 1868 (Knapp 1868), and discussion remains lively today. Here, we relate the
six major indices of time in a geometric identity, in much the same spirit as the work on
APC relationships done between the late 1860s and mid 1880s1.
Our goal is to describe the geometric identity between all six primary measures of

demographic time, the identity unifying the four aforementioned triad identities: a hexad
identity among A, P, C, T, D, and L. This novel identity may be useful or an intuitive
referent for demographers in the same way as the Lexis diagram is.We also give a bottom-
up description of how temporal identities all arise from the notion of distinct events
situated in time and the durations separating them. These more general event-duration
foundations facilitate comparison of our proposed demographic time framework with
other temporal designs found in the literature, such as the disease duration space of
Brinks et al. (2014), or the marriage identity described by Lexis (1875). The framework we
describe is general and adaptable for any event history scenario, and it is useful as a sys-
tem for delineating and deriving the full set of temporal implications in a given dataset.
In this way, our system may serve as a reference for temporal statistical designs, use-
ful both for relating different models and for expanding a given design to its full-time
consequences.
Just as the Lexis diagram is a fundamental instrument to teach demography, we hope

that the demographic timemeasures and their graphical depictions presented here will be
helpful to teachers and young demographers who wish to explore time structures beyond
age, period, and cohort. The temporal relationships we describe will also be useful for
researchers to better detect and understand patterns in their data and for methodologists
to rigorously account for the structure of data in demographic methods or statisti-
cal designs. Substantively, the concepts we present are applicable to the structure and
study of any phenomenon or transition that varies in time, including single or multistate
processes.
We begin by defining some terms used throughout the manuscript. We then explore

all combinations of two time measures, the dyadic relationships, followed by the four
triad identities and their diagrams, a generalization of the Lexis diagram to n-dimensional
space, and finally, we present the hexad demographic time-identity.

Definitions
Technical terminology

The following list describes some of the more important terms we use.

Demographic time measures are any of the six time indices discussed to describe
demographic time: chronological age (A), period (P), birth cohort (C), thanatological
age or time to death (T), lifespan or age-at-death (L), and death cohort (D).

Dyads, triads, and hexads are any set of two, three, or six unique time measures,
respectively.
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A triad identity is a triad with the property that each of its members can be derived from
the other two with no additional information. There are four triad identities: APC,
TPD, TAL, and LCD.

A temporal plane is any (x, y)-mapping of a dyad of time measures.

Using this terminology, we say that the “Lexis” measures constitute a triad identity
between chronological age, period, and birth cohort. Each dyad combination of elements
in this identity can be mapped to a temporal plane, the Lexis diagram. If we know that
Mindel turned 50 on the 21st of May, 1963, then we also can derive that she was born on
the 21st of May, 1913. Hence, any two pieces of information in this case will give the third,
and the same holds for the other triad identities.

Timemeasures

We describe time in terms of years, the dominant time scale for human demography,
although all relationships are scalable to any time unit. We therefore refer to calendar
time. We also describe the framework in terms of human lifespans, although it applies in
a more general sense to any durations observed over time. This is to say, birth may be
translated to entry, and death to exit, or any other absorbing state. The six measures of
time we consider are defined in Table 1, both in the demographic sense we describe, as
well as in a more general event history interpretation.
The concepts of thanatological age and death cohorts are likely less familiar to readers

than the other measures we consider. Thanatological age is remaining time until death,
the information approximated with life expectancy. This term is sometimes referred to in
the literature as life left, time to death, remaining lifespan, follow-up duration, residual
life, or reverse time. Chronological and thanatological age are in this way complementary,
duals, and birth, and death cohorts are a similar kind of dual. Cohorts in general associate
individuals that share a characteristic, often a combination of place and time. The deaths
of a given year are not usually referred to as a death cohort, although this concept was
already introduced by (Brouard 1986) as “génération de décès” in a retrospective study
of the French population from the twentieth century. In the time preceding death, the
members of a given death cohort likely have much in common, despite heterogeneity with
respect to time of birth. In event history or non-human contexts, anologs to death cohorts
in this framework may be even more meaningful.
Much of the work of demography is directed at the study of lifespan. Lifespan is syn-

onymous both with longevity, chronological age at death, and thanatological age at birth.
One’s ultimate completed lifespan is constant throughout life, though we have no knowl-
edge of it until death: It is assigned retrospectively. Demographers have more often used

Table 1 Definitions of the six time measures

Time measure Demographic definition Event history definition

A—chronological age Time since birth Time since start of exposure

P—period Calendar time Calendar time

C—birth cohort Calendar time of birth Calendar time of exposure start

T—thanatological age Time until death Time until event

D—death cohort Calendar time of death Calendar time of event

L—lifespan Duration of life Duration of exposure
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lifespan or age-at-death as a measure of mortality, or similar, than as a measure on which
to compare individuals or structure data.
Treating lifespan, death cohorts, and thanatological age as temporal structuring vari-

ables enables new classes of comparisons, models of understanding, and discovery, akin to
those unlocked by breaking down demographic phenomena by chronological age, period,
and birth cohort. The following sections, in this sense, provide an exhaustive classification
of the ways in which these six measures of time can be juxtaposed to such ends.

From dyads to the triad identities
We distinguish between two kinds of dyads: informative dyads and uninformative dyads.
Informative dyads are any pair of measures from which a third time measure can be
derived, forming a triad identity. There are 15 = (6

2
)
possible dyads in our set of time

measures, 12 of which are informative, and 3 of which have no derived time measure, and
are therefore called uninformative. For instance, if we take the dyad TA, L is the derived
measure, and TAL the corresponding triad identity. In contrast, nothing can be derived
from the LP dyad: One can have an eventual lifespan of 100 in the year 2016 and still be
alive with the same eventual lifespan in 2017.
In this section, we systematicallymap each dyad to its temporal plane, andwe synthesize

these into the four primary identities and their essential diagrams.We render the 15 dyad-
based diagrams that can be derived from the six time measures. Of these 15, 12 diagrams
can be distilled into just four, the triad identity diagrams. Each triad identity diagram is
then briefly discussed with suggested or speculated applications.

The question of mapping

Any mapping of two time measures to an (x, y) coordinate system constitutes a temporal
plane. If the two given time measures are members of the same triad identity, the third
member is a derived measure. If we assign A to y and P to x, thereby implying C (and the
APC triad identity), we state this relationship explicitly by writing AP(C). The temporal
plane that corresponds to this informative dyad is the contemporary representation of the
Lexis diagram (Lexis 1875; Pressat 1961). The informative dyads AC(P) and CP(A) also
belong to the Lexis identity but imply different less-common rotations and projections of
the Lexis diagram.
For each dyad, there is a fundamental question of how to map the constituent coordi-

nates to a Cartesian temporal plane. Typically, one forces parity between time units within
a specified dyad, mapping one element directly to x and the second element directly to y,
resulting in a 90° angle between the x and y axes. In this case, it is conventional to force a
unity aspect ratio between the x and y axes, such that the derived measure, if any, is then
accidentally present in a 45° ascending or descending angle, depending on the dyad and
axis orientation.
It has long been noted (Lexis 1875; Perozzo 1880) that the derived timemeasure (usually

birth cohort) is longer than either the age or period axes when plotted at 45°. If a right
angle and unity aspect ratio is forced between the dyad, the derived measure is always
stretched by

√
2. Another logical mapping would be to translate to (x, y) coordinates that

force 60° angles between the threemeasures. Such amapping ensures that the spatial units
are equal for the threemeasures, and we therefore refer to it as the isotropicmapping. The
isotropic mapping is comparable to using ternary or barycentric coordinate systems: The
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three variants of each triad identity are simple rotations of one another, and they require
no rescaling. The primary justification for isotropic demographic surfaces comes from a
data visualization perspective, where it may be hypothesized that the viewer’s ability to
compare slopes is hindered if time coordinates are not on the same scale. For the sake
of clarity, all two-dimensional diagrams are rendered in Cartesian rather than isotropic
coordinates.

Dyads to diagrams

Each of the 15 dyads, an explanation or simple example, and the corresponding diagram
representations are summarized in Table 2. The 12 informative dyads consist of two ele-
ments from one of the four triad identities (APC, TPD, TAL, LCD), which we analyze in
detail in further sections. The uninformative dyads are simply pairs of time measures that
do not have a derived measure and therefore are not contained in any of these four triad
identities.
Most of what we know about how rates change over age and time comes from the very

first juxtaposition in Table 2, AP(C). While CP(A) and AC(P) are statistically redundant
when exact times are used, they are not fully redundant if based on discrete double-
classification of data, as often provided in aggregated official statistics. Double classified
data are found on the APC diagram in the shape of squares (AP), horizontal parallelo-
grams (AC) and vertical parallelograms (CP), and these are commonly used to compute
different kinds of demographic rates and probabilities (Caselli et al. 2006, p. 63). The
other dyadic juxtapositions (involving the measures T, D, or L) can be considered as either
rare or novel ways of structuring or viewing temporal variation in demography, and these
imply new families of rates and probabilities.

The triad identities

There are 20 = (6
3
)
ways to choose three different time indices out of six, of which four

form a triad identity: APC, TPD, TAL, and LCD. Given the three time measures from
any of the triad identities, one can derive no further time measures. If one selects three
random time indices that do not form any of these four triad identities (20 − 4 = 16
possibilities), this property does not hold. For instance, in the triad APT, age and period
are not sufficient to determine thanatological age. Given the triad APT, one can however
derive the remaining three time measures.
Triad identities are more meaningful than uninformative dyads. This is so even in the

absence of data, due to the underlying relationship between measures. Each of the triad
identities can accommodate some version of a lifeline, for instance. In the following,
we therefore lay out the four primary diagrams that belong to the triad identities. The
question of which diagram mapping is relevant to a given demographic phenomena is a
function of patterns in the data. The best diagram is the one that captures all meaningful
variation in the data. If APC highlights meaningful variation in a phenomenon, then its
representation as such is useful, and the same holds for the other identities.

APC: chronological age, period, and birth cohort

The Lexis diagram has long been used in demography as a conceptual tool for struc-
turing data, observations, and rate estimation, as inspiration for work on statistical
identification, and as the coordinate basis of contemporary Lexis-surfaces. Since the
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Table 2 All dyadic juxtapositions of the six measures of demographic time

Variants of APC

AP(C) C = P − A The AP(C) temporal plane constitutes the
classical Lexis diagram.

AC(P) P = C + A The AC(P) temporal plane is equivalent to the
Lexis diagram except birth cohort is given and
period is derived rather than the other way
around.

CP(A) A = P − C The CP(A) temporal plane is equivalent to the
Lexis diagram except birth cohorts are given and
age is derived rather than the other way around.

Variants of TPD

TP(D) D = P + T Helen had 30 years of life left (T) in 1971 (P) and
therefore belonged to the 2001 death cohort (D)

PD(T) T = D − P Mindel died in 1973 (D). In 1953 (P) she had 20
years left to live (T).

TD(P) P = D − T Irene died in 1974 (D). When she had 30
remaining years of life (T) the year must have
been 1944 (P).

Variants of TAL

TA(L) L = T + A The time already lived and the time still left sum up to the total
lifespan.

TL(A) A = L − T Helen lived to the age of 86 (L). When she had
20 years left (T) she must have been 66 (A).

AL(T) T = A − L Tim is 34 years old (A) and will live to the age of
96 (L), leaving him 62 years (T) to settle affairs.
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Table 2 All dyadic juxtapositions of the six measures of demographic time (Continued)

Variants of LCD

LC(D) D = C + L Àngels was born in 1940 (C) and she lived to be
64 (L), implying an untimely death in 2004 (D)

CD(L) L = D − C Pascal was born in 1893 (C) and died in 1964
(D), implying a lifespan of 71 (L), or so.

LD(C) C = D − L Margaret died in Dec., 1995 (D) with a
completed lifespan of 96 (L), putting her birth
year in 1900 (C).

The uninformative dyads

LP(-) The LP plane is non-informative. No additional
measures can be derived knowing just lifespan
and period.

CT(-) The CT plane is non-informative. No additional
measures can be derived knowing just birth
cohort and thanatological age.

AD(-) The AD plane is non-informative. No additional
measures can be derived knowing just death
cohort and age.

Note: The temporal planes are named after the two given time scales. The derived scale is appended in parentheses. Contrary
to mathematical convention we name the ordinate scale first and the abscissa scale second. This is to be consistent with the
established APC and ACP terms

Lexis diagram could have been named for others (Keiding 2011; Vandeschrick 2001),
and since we compare with other temporal configurations, we refer to it as the
APC diagram.
The APC diagram in Fig. 1 represents years lived on the y-axis, calendar years on the

x-axis, and birth cohorts as the right-ascending diagonals. This is the most common of
several possible configurations of the APC dimensions. Individual lifelines (black) are
aligned in the birth cohort direction, starting with birth (filled circle) at chronological age
zero, and death (circled x). Any APC surface can be interpreted along each of these three
dimensions of temporal structure.
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Fig. 1 An APC diagram with six lifelines

TPD: thanatological age, period, and death cohort

The TPD diagram is best imagined as the inverse of the APC diagram. One may take the
same individuals represented in Fig. 1 and group them by death cohorts (D) instead of
birth cohorts (C). Lifelines then descend such that all endpoints align to thanatological age
0, creating the diagram in Fig. 2 in which individuals dying at different ages but in the same
time period are grouped together. To our knowledge, the TPD diagram has only appeared
once in the literature, as a didactic aid in a proof of symmetry between chronological and
thanatological age structure in discrete stationary populations (Villavicencio and Riffe
2016). TPD diagrams may also be useful to arrange events or durations that are logically
aligned (or may only be aligned) by time of termination. It may be reasonable to align on
termination in cases where this brings preceding patterns of variation into focus.
There are several examples of analysis of this kind of data, usually stemming from a lack

of information on chronological age. This is the case, for instance, in biodemographic
studies in which wild animals with unknown ages are captured and then followed up

Fig. 2 A TPD diagram with six lifelines
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until death (Müller et al. 2004, 2007). Other examples are human historical databases,
which usually lack information about births, but individuals can be traced from a par-
ticular event until death. This is the case in the Barcelona Historical Marriage Database,
which collects information about marriage licenses of Barcelona (Spain) from the mid-
fifteenth century until the early twentieth century. In this database, ages are unknown,
but individuals are first identified in their marriage record and an estimation of the
times of death is plausible (Villavicencio et al. 2015). We speculate that TPD diagrams
could also be used in biomedical studies for the representation of lifelines preceding
deaths from infectious or acquired conditions, when the time of infection or acquisi-
tion remains unknown, an issue which has received attention in the statistical literature
(Chan and Wang 2010).

TAL: thanatological age, chronological age, and lifespan

TAL is an appropriate diagram to examine processes that vary over the life course. More
precisely, the TAL plane can highlight variation that is related to time since birth, time
until death, length of life, and their combinations. These key aspects of demographic time
are compressed to chronological age only in the APC perspective, which can blend out
meaningful variation. Since the life course belongs to the cohort perspective, it is best to
think of the TAL plane as belonging to some particular birth cohort. Alternatively, a TAL
triangle may be taken as a cross-section through the period dimension, a sort of synthetic
TAL plane.
To our knowledge, the TAL diagram has only appeared once in the literature, in an

exploration and classification of late-life health conditions (Riffe et al. 2016). There are
however instances of statistical designs adapted to this coordinate plane (McCullagh and
Dempsey 2013; Jewell 2016). The TAL diagram in Fig. 3 contains no indication of period
or cohorts, as calendar time is blended out in this diagram. The lifelines depicted are
identical to those shown in APC Fig. 1 and TPD Fig. 2. The TAL diagram is useful for char-
acterizing patterns of prevalence of health conditions. We speculate that data structured
and aligned in this way may yield hitherto undescribed patterns in other contexts, e.g.,
measurements onmother and fetus over the course of a pregnancymay vary by age of ges-
tation, time until parturition, or total length of the pregnancy; growth and reproduction
patterns over age may be conditioned on the life-span of an organism.

LCD: lifespan, birth cohort, and death cohort

The LCD diagram completes our set of identities. It is based on the relationship between
lifespan, birth cohort, and death cohort. In Fig. 4, lifespans are indexed by the y-axis,
while birth cohorts are indexed by the x-axis, and death cohorts are found in descending
diagonals. To structure data on these three time measures implies excluding time-varying
information over the life course. An individual only ever has one lifespan, one birth
cohort, and one death cohort, such that the LCD coordinates of an individual are con-
stant throughout life. The LCD plane is therefore orthogonal to lifelines, and individuals
are located with points, rather than life segments. In Fig. 4, the same six individuals from
previous diagram figures are represented with crossed circles.
We recommend this mapping for plotting surfaces of values that are cumulative or static

over the life course, but that may vary over time or by length of life. Imagine an LCD
surface of cumulative life course consumptive surplus or deficit, or anything else that
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Fig. 3 A TAL diagram with six lifelines. Since two of the six lifelines are of equal length (75), they are
overlapped in this figure and appear to be five

might vary by lifespan and moment of birth or death, such as children ever born, years of
retirement, the size of trees or other aspects of forestry, populations of buildings in large
cities, and so forth. Lexis (1875) describes an analogous relationship between marriage
cohort, separation cohort, and duration of marriage.

Fig. 4 An LCD diagram with six lifelines. Since the LCD plane is orthogonal to the life course, lifelines are
depicted as points
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The relationship between events and durations
The four identity-based diagrams discussed in prior sections are likely straightfor-
ward, either because the Lexis diagram is already familiar to the reader, or because
Cartesian representations are widely used. However, the special relationship between
these diagrams is based on a single hexad identity, which is less straightforward, and its
resultant diagram is best derived from a more general groundwork. In this section we
therefore describe a more general approach to understanding and constructing higher
order temporal identities. This approach is based on a categorization of time mea-
sures into events and durations, and the realization that durations derive from events in
calendar time.

A general framework

The general relationship between events and durations serves not only to introduce the
full demographic time framework but also to compare it with other relatively complicated
temporal designs in the literature. Each of the six time measures that we have treated
can be categorized into two basic types: events and durations. Events include birth (C)
and death (D) cohort, as well as period itself (P). Durations are time differences between
pairs of events: chronological age A = P – C, thanatological age T = D – P, and lifespan
L = D – C. In the following we describe APC, APCTDL and other time frameworks in
terms of vector spaces which, via linear transformation, relate the timing of events with
durations between events.

Definition 1 Let p = (p1, . . . , pn)� ∈ Rn be a vector of n events or points in time with
n ≥ 2. A corresponding vector of durations d ∈ Rm is composed by elements of the form
di,j = pj − pi for i = 1, . . . , n − 1, j = 2, . . . , n and j > i.

The vector of events p can be ordered in an arbitrary way as long as the same elements
in p correspond to the same type of event for all observations. A consequence of this is
that durations may be either negative or positive depending on the ordering of events over
the life course.

Proposition 1 Given a vector of events p = (p1, . . . , pn)� ∈ Rn, the dimension of the
corresponding vector of durations d ∈ Rm is m = n(n − 1)/2.

Proof By definition, each element of d is formed by two different elements of p. There-
fore, the length of d is the number of combinations of 2 different elements from a set
of size n, such that the order of selection does not matter. From combinatorial theory,
it is well known that this value is given by the binomial coefficient

(n
2
) = n!

2!(n−2)! =
n(n − 1)/2.

Proposition 2 For any vector of events p = (p1, . . . , pn)� ∈ Rn, there is always a linear
transformation f : Rn → Rm that provides a corresponding vector of durations d ∈ Rm.

Proof The existence of f is a direct consequence of Definition 1, given that all the
elements of d are a linear combination of elements of p.
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Corollary 1 Given p = (p1, . . . , pn)� ∈ Rn, suppose that d = (p2−p1, . . . , pn−p1, p3−
p2, . . . , pn − p2, . . . , pn − pn−1). Then, the linear transformation f : Rn → Rm that yields
d from p is defined by the m × n matrix

X(m×n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

−1
... In−1

−1
0 −1
...

... In−2
0 −1

· · ·
0 · · · 0 −1
0 · · · 0 −1

I2

0 · · · 0 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

, (1)

such that d = X × p, and where Ik denotes the k × k identity matrix.

These results imply that given an arbitrary set of n ≥ 2 points in time, it is always
possible to calculate the durations between any pair of these points. However, note that
matrix X in (1) yields a vector of durations d ∈ Rm whose elements are sorted in an
arbitrary way. The following statement may be relevant in this regard.

Proposition 3 Given a vector of events p = (p1, . . . , pn)� ∈ Rn, the corresponding vector
of durations d ∈ Rm is unique, irrespective of the sorting of its elements.

Proof Let us suppose that d1 and d2 are two different vectors of durations correspond-
ing to the same vector of events p ∈ Rn. Provided that d1 and d2 are finite and, by
definition, both have dimensionm and are formed by the same combinations of elements
of p, it will always be possible to re-arrange the elements of d2 in the same order as d1

such that d1 = d2.

This last proposition allows considering X as the matrix defining the linear transforma-
tion between points and durations. Given a vector p and the corresponding d = X × p,
any differently sorted vector of durations would be obtained by swapping the rows of X.
Further, note that X does not have an inverse matrix, and therefore there is no linear
transformation from durations to events. This is intuitively straightforward if one thinks
that two vectors of events can yield the same vector of durations. In other words, a par-
ticular vector of durations can come from infinite different vectors of points in time.
For instance, using X, the vectors of events p1 = (1, 2, 3) and p2 = (2, 3, 4) both yield
d = (1, 2, 1). With respect to the six time measures discussed here, note that the events
CPD yield TAL, but TAL does not yield CPD.
The relationship between events and durations can be systematically represented in

a series of timelines and graphs that may better guide intuition. The joint relationship
between events and durations is more explicit and more compact in a graph representa-
tion. As introduced in the following definition, the total number of timemeasures implied
by a set of n events and the corresponding durations is n+m = n+n(n−1)/2 = n(n+1)/2.
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Definition 2 Given a vector of events p = (p1, . . . , pn)� ∈ Rn, n ≥ 2, and the corre-
sponding vector of durations d ∈ Rm, we define the graph of time measures G as the graph
with n+m = n+n(n+1)/2 edges labelled by (p,d) ∈ Rn(n+1)/2 such that the relationships
in Definition 1 are preserved.

Table 3 displays a timeline and a graph for two, three, and four event sets. The cen-
tral column shows timelines, a familiar linear representation of time, with events marked
with red ticks labelled with p1 . . . pn. Durations span each of the m possible event dyads
and are drawn below the main timeline as curly braces labelled with d1,2 . . . dn−1,n. The
right column of Table 3 draws the corresponding graph with a total of n + 1 vertices and
n + m = n(n + 1)/2 edges for the elements of both p and d. All events of p connect to a
single vertex, and event edges are indicated in red with red-circled labels. In this render-
ing, each triangle formed by three mutually connecting edges represents a triad identity.
The top row n = 2 consists in a single identity. Three and four events imply a total of four
and ten triad identities, respectively, and in general a given higher order identity will yield
(n+1

3
)
triad identities. We call this a temporal plane graph because the triangle resulting

from any given triad sub-identity can be extended over all valid values of its time mea-
sures to form a temporal plane, as of the diagrams in “The triad identities” section. The
dimensionality of the extended diagram of a given identity follows from the number of
events from which the identity is derived: n = 2 produces a two-dimensional diagram,
n = 3 produces a 3-dimensional diagram, and so forth.

Table 3 Event-duration timeline and graph for two, three, and four event sequences
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Definition 3 We define P ⊆ Rn as the vector-space (event-space) spanning all possible
values vector p may take, and D ⊆ Rm as the vector space spanning all possible instances
of the duration vector d.

Just like the APC diagram allows for all possible combinations of period, cohort and age
we may consider the vector space P spanning all possible instances of p. The calculation
of durations between events as described in Proposition 2 can then be understood as a
linear transformation from a vector space P whose bases represent events to a duration
vector space D whose bases represent durations.

Examples

The following examples show how different demographic time frameworks can all be
expressed as instances of the event-duration vector space defined above.

Example 1: The Lexis surface Let p have two elements, as in the first row of Table 3.
Then d consists of just one element, defined as

d1,2 = p2 − p1 . (2)

Interpreting d1,2 as age, p2 as period, and p1 as birth cohort yields the APC identity.
The standard Lexis surface is constructed via a change of basis from the event-space P,
featuring basis vectors (p1, p2), to the event-duration space M, featuring basis vectors
(p2, d1,2).

Example 2: Lexis’ marriage identity Along with his well known 2-dimensional diagram
Lexis (1875) also described a 3-dimensional extension applied to themarriage and separa-
tion processes, reproduced in Keiding (2006). Let p have three elements, as in the second
row of Table 3. Then d is defined as

d1,2 = p2 − p1
d1,3 = p3 − p1
d2,3 = p3 − p2

. (3)

Interpreting p1 as birth cohort, p2 asmarriage cohort and p3 as separation cohort yields
the durations d1,2 as age at marriage, d1,3 as age at separation, and d2,3 as duration of
marriage. Lexis’ “marriage space”M is reconstructed by a change of basis from P ⊆ R3 →
M ⊆ R3, with the new orthogonal basis formed by (p1, d1,2, d2,3).

Example 3: Adding death cohort to the Lexis surface As in Example 2 we start with a
three element vector p yielding the very same identities as in Eq. (3) and the second row
of Table 3, but with different interpretations. Interpreting p1 as birth cohort, p2 as period
and p3 as death cohort yields the durations d1,2 as chronological age, d1,3 as lifespan, and
d2,3 as time to death. This vector space contains the Lexis surface as a sub-space, as well
as the other planes presented in “The triad identities” section. We return to this identity
in the following sections.

Example 4: Brinks’ Illness-Death model Brinks et al. (2014) describe an illness-death
process atop the Lexis surface, and with diagnosis and death as additional events, for a
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total of four events. Let p have four elements, as in the third row of Table 3. Then d is
defined as:

d1,2 = p2 − p1
d1,3 = p3 − p1
d2,3 = p3 − p2
d1,4 = p4 − p1
d2,4 = p4 − p2
d3,4 = p4 − p3

. (4)

Interpreting p1 as birth cohort, p2 as period, p3 as time at diagnosis, and p4 as death
cohort yields the following composition of d: d1,2 is chronological age, d1,3 is age at diagno-
sis, d1,4 is lifespan, d2,3 is time to/since diagnosis2, d2,4 is time to death, and d3,4 is duration
of illness (an irreversible state).
Unlike the other examples, the actual vector-space of demographic time shown in

Brinks et al. (2014) Fig. 2 only identifies a subset of the times-measures implied by the
model of the authors, namely age (y-axis), period (x-axis), birth cohort (implied by a lin-
ear combination of age and period) and duration of disease (z axis). Although lifelines in
this depiction only begin to ascend into the disease duration axis at the time of disease
diagnosis, this event time measure is not ascribed to an axis per se or implied by the other
axes, and no further time scales can be derived from the three axes drawn. Instead, a few
additional events and durations (death cohort, timing of diagnosis and duration of dis-
ease) are introduced as markings within the three dimensional vector space, just as one
would mark specific life-lines on a Lexis-diagram without accounting for all possible life-
lines. Instead, the four-dimensional vector-space can be considered as the larger setting
within which this model operates.

A tetrahedron relates the six demographic timemeasures
The demographic time framework we present includes three events (period, birth cohort,
and death cohort), and it therefore leads to a graph based on the second row and third
column of Table 3, here redrawn in Fig. 5 with a slight rearrangement of the vertices, and
edges labelled with the six demographic time measures.
There are a total of four triangles in Fig. 5, one for each of the triad sub-identities, such

that each time measure is an element of two triad identities. Each of these triangles is
the edge-graph of a face of the tetrahedron, ergo each face of the tetrahedron represents
one of the triad identities. It is reasonably straightforward to imagine this graph as the
wire-frame of a 3-d tetrahedron—as the 3-d edge structure of the tetrahedron platonic
solid.
For exposition, imagine that the middle vertex of Fig. 5 is the top (closer to the eye),

while the outer edges A, P, and C form the base of the tetrahedron, forming the much-
studied APC identity. The South face corresponds to the TPD identity, the Northeast face
to the TAL identity, and the Northwest face to LCD identity. The transformation of this
three-event system to a three dimensional space follows Definition 2. It may also suffice
to simply imagine that each face of the tetrahedron forms the basis of a plane, such that
the tetrahedron itself defines four planes. These four planes are the four temporal planes
that underly the four diagrams presented in “The triad identities” section. A full diagram



Riffe et al. Genus  (2017) 73:7 Page 16 of 24

Fig. 5 Tetrahedral graph of demographic time hexad identity, with edges labelled by the six time indices

of the demographic time identity (or any identity based on three events) conforms in this
way with the geometry of a tetrahedron.

Diagram of the hexad identity
There are different ways to proportion this three-dimensional construct, of which we only
present the isotropric mapping3. In an isotropic projection, the tetrahedron is regular,
such that all edges are of the same length, and the units of each of the six represented time
measures are therefore equal. In this case, the four triad identities map to their respective
temporal planes as tessellations of equilateral triangles. When the plane parallel to each
respective face is repeated in equal intervals, we have an isotropic 3-d space4. Displaying
all planes simultaneously creates a very dense and difficult-to-read diagram. We opt to
delineate the space using the intersection of two planes.
Figure 6 gives a view of a demographic time diagram that corresponds to the hexad

identity, where birth-cohort TAL cross-sectional planes are placed in sequence in a per-
spective drawing5. The most recent TAL plane, for the year 2000, is placed in the front,
whereas past TAL planes are stacked behind it, highlighted in 25-year intervals. The left
edge of the frontmost TAL plane is labelled as an axis for thanatological age, although
the same tick marks also serve for completed lifespan. The base of this figure is the APC
plane, drawn through thanatological age 0. Each of the TAL planes sits atop a single birth
cohort line from the familiar APC plane that makes up the base of the diagram.
For example, imagine an infant born in the year 2000. Without further information, we

only know that this infant is located somewhere on the thanatological age axis (left edge)
of the front TAL plane. If this infant is destined to die in the year 2100, then the vertical
position at birth will be at the axis tick for thanatological age 100. This person’s entire life
stays on the 100 lifespan line (labelled), descending over time towards thanatological age
0 at the base. Point A marks the midpoint in life for this individual, at chronological age
50 (red line, labelled), and thanatological age 50 (green line). If another APC plane were
drawn through thanatological age 50, we would see that point A is in the year 2050. Since
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Fig. 6 Diagram of the hexad identity, showing a sequence of TAL planes intersecting with a single APC plane
at the base

all individuals born in the year 2000 complete the same age in the same year, we can also
recuperate the year for point A by following the chronological age 50 line (red) down to
where it meets the blue line for the year 2050. The lifeline descends downward towards
the APC plane for thanatological age 0 at chronological age 100, meeting the year 2100,
which is individual A’s death cohort.
The density and location of imaginary lifelines in this diagram, omitting migration, is

purely a function of birth cohort size and survival. For extinct cohorts all lifelines can be
positioned, but for the 2000 birth cohort this is not yet the case. Most of the front TAL
plane is in the future. One may imagine yet another plane intersecting this space—the
“present plane,” which is identical to the period TAL plane for the present moment. To see
how this plane divides the space, imagine that we are in the year 2025, and follow the blue
line in the APC base inward 25 years to where it meets the red line for chronological age
25, and follow the red line up the front TAL plane. A single plane cuts through the year
2025 and chronological age 25 from the year 2000 birth cohort. This plane shifts forward
or backward in time to meet the present year. In this particular plane, the coordinates T,
L, and D are uncertain. The period TAL plane ω years in the past is fully identified, ergo,
theoretically the lifespan of each individual in the time of Lexis is knowable.
Figure 6 could have been drawn with TPD or LCD planes highlighted as well, but these

can still be imagined upon the current rendering. TPD planes transect this space through
any given chronological age, for instance. Imagine a wall on the left side of the prism,
cutting through chronological age 0 (recall Fig. 2). In this case, the thanatological age axis
is indicated in the very back of the diagram, calendar time becomes another axis, and
death cohort diagonals are not drawn. TPD planes sequence inward from this first plane,
always forming cross-sections through chronological age. The LCD plane is to be found
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by rotating the current prism such that the angle of view is directly orthogonal to lifelines,
which would then appear as points (recall Fig. 4).
The essential property of this perspective diagram is that lifelines start and end in paral-

lel, desceding downward and forward in time. A real population of renewing lives, spread
over time and over the typical range of human lifespans, will tend to fill the entirety of the
prism depicted in Fig. 6, and any given point in the prism can be given six demographic
time coordinates, of which three are redundant. A similar 3d construct could be made
for any hexad time-identity, and these are not strictly limited to event-duration identities
based on three events.

Application
The coordinate system described heremay be useful for the visualization of data, to enable
discovery, and to better inform demographic methods. We have not yet mentioned how
such developments might arise in practice. We therefore give a brief case study to demon-
strate the potential of the present framework, but this is far from an exhaustive application
of its usefulness for other substantive questions, nor is the case study described in com-
plete rigor. Specifically, we reason that projections or comparisons of prevalence-based
healthy life expectancy (HLE) are in many cases biased in period prevalence-based mod-
els unless one takes into account the thanatological age pattern of prevalence, as well as
mortality differences.
There are three steps in our empirical inquiry. The first step is to visualize variables

on health outcomes using the demographic time diagram. The second step is pattern
detection. We assess the primary time measures over which health outcomes appear to
vary. Under the assumption that these patterns of temporal variation are empirically reg-
ular, we describe a method of standardizing health expectancy calculations for morbidity
conditions whose prevalence is more closely related to thanatological age. Finally, we rea-
son that period estimates of health expectancies for certain health conditions are biased
when mortality has been or will-be changing, and comparisons of HLE between popu-
lations with different mortality are also biased. We conclude that comparisons of health
expectancies might be biased in ways not previously documented.
Let us take the example of self-reported health (SRH). The data come from the RAND

version of the US Health and Retirement Study (Health and Retirement Study 2013;
RAND 2013). Since this survey includes multiple dated observations of individuals, as
well as information on time of birth and a followup for time of death, we have or can derive
each of the six demographic time measures for each observation. Further methodological
details are given by (Riffe et al.: Time-to-death patterns in markers of age and depen-
dency, forthcoming).We opt to view data on TAL surfaces because these allow us to judge
the shape of prevalence over the life course, specifically to show how SRH prevalence
variation is summarizedmore efficiently as a time-to-death pattern than as an age pattern.
Figure 7 displays a series of TAL surface plots of male SRH prevalance, each refer-

ring to a different quinquennial birth cohort (1905–09, 1910–14, . . . ). These follow the
coordinates of the TAL diagram in Fig. 3. The x-axis is chronological age, the y-axis
is thanatological age, and downward-sloping diagonals delineate lifespan. Lifelines (not
drawn) descend parallel to the downward diagonals seen on the background grid. The
density of lifelines in each surface is not visible in this rendering, but one can imagine the
mode of the lifetable deaths distribution running down the diagonal that meets near age
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d

Fig. 7 Prevalence of males self-reporting poor health by chronological and thanatological age, by
quinquennial birth cohorts, 1905–1925 (Sources: Health and Retirement Study 2013; RAND 2013)

80 on the x-axis. Each surface describes the end-of-life SRH prevalence of a birth cohort
for the range of lifespan permitted by the survey, but with a lower bound of 70 and an
upper bound of 100. Surfaces are therfore shifted down five ages (leftward) for each suc-
cessive quinquennial birth cohort. Colors and contours indicate prevalence value ranges,
with pastel pink for low values (under 10%) and deep reds for high values (over 40%).
Contour lines in the surfaces are perpendicular to the primary direction of variation.

For each cohort, the deepest red bar is located in the last year of life and spread over a
wide range of ages, giving a roughly horizontal contour line. Other contour lines are also
relatively horizontal. This means that variation (in this window of observation) is mainly
over thanatological age and not over chronological age. Were variation mostly a function
of chronological age the contour lines would be vertical. For each of these birth cohorts we
have a series of prevalence trajectories—empirical examples of the lifeline morbidity tra-
jectories often conceptually diagrammed in the literature on morbidity compression (e.g.,
(Fries 2005)). If we were to summarize each of these surfaces with a single line, a thana-
tological age pattern would give a much more compact description than a chronological
age pattern. Patterns are also relatively stable between cohorts.
When weighted by lifelines, the marginal chronological age pattern of SRH, i.e., as mea-

sured with the “Sullivan curve” (Sullivan 1971), would show an increasing tendency over
age, in agreement with common expectations. However, such an increasing pattern over
age is a marginal artifact, due to an interaction between the distribution of lifespans and
the relatively fixed underlying pattern of morbidity seen in Fig. 7. These surfaces can
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indeed be tidily summarized with a single line, but it is a line over the thanatological age
margin rather than over chronological age.
Since the patterns for each of these cohorts can be presumed to be the same, any shift-

ing in the distribution of age at death ought not produce a change in the expected years
of poor health for a given length of life. Further, cohort expected life years spent in poor
health should also be approximately the same, even if the underlying age-at-death dis-
tribution shifts upward. If morbidity change is a pure function of thanatological age, an
increase in life expectancy should increase healthy life expectancy by the same amount.
This is not the prediction when we base analyses on the chronological age pattern of self-
reported health. Indeed, an underlying morbidity pattern as stable as that seen in Fig. 7
would predict improvements in the marginal chronological age pattern of self-reported
health if the lifespan distribution were to shift to higher ages. This is because a higher
age at death implies more years lived in ages farther from death, where prevalence is low.
This potential bias in the current status quo of morbidity measurement and prediction
leads to pessimistic morbidity scenarios when mortality improvements are projected, and
it undermines health expectancy comparisons between groups with different mortality
(Riffe et al. 2016). Cohort health expectancies are in either case unbiased, but these are
also not commonly estimated due to data constraints. This approach and essential find-
ing is in agreement with the results of similar analytic approaches to the prediction of
healthcare expenditure(e.g., Geue et al. 2001, Miller 2014).
Using the data from our example surfaces, we calculate some basic results that support

our case. Let us take the population of US males aged 60 and older, and assume that mean
time-to-death trajectory derived from the Fig. 7 surfaces is valid for them. We apply this
trajectory to the synthetic stationary population of each year from 1980 and 2010 (Human
Mortality Database 2014) following the formulas in (Riffe et al. 2016). We then calculate
the resulting healthy and unhealthy life expectancies, and compare these with expectan-
cies calculated using the standard Sullivan method and assuming the 1980 chronological
age pattern of poor SRH6. Total remaining life expectancy at age 60 increased 4.3 years
from 17.4 in 1980 to 21.7 years in 2010. Assuming the time-to-death prevalence trajec-
tory, we calculate healthy life expectancies of 15.7 and 19.9, respectively, an increase of
4.2 years. Unhealthy life expectancy in this scenario increased just 0.1 years. Had we used
the Sullivan curve from 1980 to calculate the 2010 values, we would have predicted an
increase of 0.7 years in unhealthy life expectancy, or 39% versus the 4% “observed” in this
simple scenario.
This is a large difference in projected morbidity, and it is based on a relatively minor

tweak to standard methodology, itself inspired by viewing data under the conditions
enabled by the demographic time framework and adjusting standard demographic meth-
ods to capture the direction of temporal variation in data. There is a wide variety of
prevalence patterns when viewed in this way (Riffe et al.: Time-to-death patterns in mark-
ers of age and dependency, forthcoming), (Wolf et al. 2015), and much empirical and
methodological work is still required to verify that these findings are representative and
to understand the consequences for the standard ways of comparing and projecting HLE.
Our objective in this application has been to demonstrate how viewing data structured
by the time-framework we propose can lead to new understandings and approaches to
processes over the life course. Other methodological applications of this framework are
imaginable in other phases of the life course, or non-human subjects.
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Conclusions
The age-period-cohort relationship is a special subset of a richer and unbounded set of
potential time identities. Of this infinite set of temporal relationships, we present one
six-way demographic time identity that expands the Lexis diagram to a Lexis “space” so
as to structure transitions with respect to both birth and death (entry and exit). We call
this hexad relationship a demographic time framework because it is based on the events
of birth and death in calendar time, entailing six time measures: chronological age (A),
period (P), birth cohort (C), time to death (T), death cohort (D), and individual lifespan
(L). In the “From dyads to the triad identities” section, we show how combinations of
these time measures imply four triad identities, each of which consists in simple linear
relationship between its three constituent time measures. We describe how each triad
identity can be extended into a temporal plane, with a characteristic diagram. The four
triad identities underly a family of four diagrams that include the familiar Lexis diagram,
but also three either new or uncommon diagrams: The TPD, which is a sort of dual to the
Lexis diagram; the TAL, whose use we deomonstrate in the “Application” section; and the
LCD diagrams.
These four identities and diagrams relate to one another in a single relationship that can

be represented in three-dimensional space. In the “Diagram of the hexad identity” section
we render a diagram of the demographic time identity. We argue that the full three
dimensional diagram is not necesarily a practical way to represent demographic data, but
that it forms a useful reference to understand demographic structure. Practically, data
structured by all six demographic time measures can be represented on any of the four
diagrams if controlled properly. In the “Application” section we present a brief application
of this technique to the prevalence of poor self-reported health in older ages in the USA.
We show that the choice of age pattern when calculating prevalence-based measures of
healthy life expectancy can have a large impact on healthy life expectancy. The size of the
effect varies depending on themorbidity pattern, and on how fast mortality andmorbidity
are both changing. However, the experience of old-age mortality improvement in recent
decades leads us to suspect that many projections of old-age morbidity burden are likely
to be needlessly pessimistic if it is the case that the prevalence of pertinent health con-
ditions varies primarily as a function of time to death. This clearly merits further study
in the case of human population health, and we speculate that findings of similar import
may arise if this framework is used to visualize data and inform new methods in other
unrelated areas of investigation.
In “The relationship between events and durations” section, we digress to present a

more general event-duration identity framework, which allows us to situate the demo-
graphic time hexad identity more rigorously as a special case of an event-duration
framework.We compare this identity with other relatively complicated temporal relation-
ships in the literature, including the Lexis (1875) marriage identity and the illness-death
model by Brinks et al. (2014). Our comparison between complex statistical designs serves
to illustrate the transferability of the concepts we present to other applications. The exam-
ples we select to illustrate this framework happen to be from social and medical sciences,
but the same relationships hold in any single or multi-state situation. That is to say, one
may represent the time-space of any phenomenon, transition, dated event, or sequence
thereof by deriving the time identity graph as in Table 3 and using this as the basis of
further analysis.
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Data visualization is an effective way to detect patterns in temporal variation. The
generalized time framework we propose is conceived as one adequate to capture all pos-
sible temporal variation. The demographic time hexad identity is a special case whose
use we suggest for visualizing macro patterns in demographic data, probably via small
multiples of successive time slices in one of the diagrams from the “From dyads to the
triad identities” section, similar to that shown in Fig. 7 on the basis of the TAL dia-
gram. Such visualization strategies at this time are exploratory, and this is a technique
that may benefit from further refinement. Further, a cross-section through the demo-
graphic time-space need not be parallel to one of the four identity-planes. Other more
complicated temporal designs are also possible, potentially based on even higher dimen-
sional time-spaces. In this case, cross-sectionsmay also be a helpful trick for visualization,
although this is an area in need of future work. Further, if the purpose of visualization
in this case is merely to detect the principal direction of variation, appropriate statisti-
cal methods should be developed (or recommended) to do so in a more rigorous way,
and these should be flexible with respect to the full set of time measures implied by a
given identity.
Several lines of substantive research may be augmented by or based on the findings we

present. For example, it is of public health interest to document the full range of late-
life morbidity patterns over various time measures. We do not at this time know how
the late life morbidity patterns referred to in the “Application” section change over time
or vary between populations, for example. This has implications for the use of health
expectancies and related measures in comparative studies of disease burden. However,
the time framework we describe may also be useful more generally to structure dis-
ease processes. More broadly, the temporal dynamics of classiscal demographic processes
such as childbearing, partner formation and dissolution, migrations, employment tran-
sitions, and temporal interactions between these events may also be fully captured and
explored under our framework. To do so, we offer some tentative advice: First, create
the identity graph of interest; next, complete the data to include “implied” time mea-
sures; then, toggle through cross-sections of the structured data to determine which ones
reveal important patterns. The phenomena that we are most likely to learn the most
about by taking this simple analytic step are those that are dogmatically held to vary only
over age.
Finally, we believe in the pedagogical value of the framework introduced in this

paper. We hope that the present inquiry will be useful as a teaching instrument in the
same way as Lexis diagrams have formed a part of basic demographic education. Our
generalized time framework and the relationship between the six dimensions of demo-
graphic time both help situate the APC paradigm in a broader context. Just as scientific
discovery in general depends partly on the development of finer optics and instrumen-
tation, we hope that the framework we describe will prove an instrument to enable
new discoveries in formal and empirical demography, as well as other diverse fields
of investigation.

Endnotes
1 See e.g., Keiding (2011) for an overview of that literature.
2 For points in time past the time at diagnosis d2,3 becomes negative and can be

interpreted as time since diagnosis.
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3 To compare, Lexis (1875) used a Cartesian mapping for his marriage identity, with
right angles between birth cohort, age at marriage, and duration married.

4 The isotropic space that results from this framework is known in other disciplines with
different nomenclatures. In geometry, this structure is called the tetrahedral-octahedral
honeycomb, a variety of space-filling tessellation. In architecture, it is found in the octet
truss system. In physics it is called the isotropic vector matrix. Constructs following this
geometry exist in nature, in other theoretical settings, and in man-made structures.

5 The coordinates used to render Fig. 6 are isotropic. However, there are no 60° angles
in this figure due to the use of parallax and an indirect viewing angle in this rendering for
the sake of increased legibility.

6 The 1980 chronological age pattern of poor SRH is calculated from the 1980 stationary
population and the same fixed time-to-death prevalence trajectory.
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