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Abstract
Female and male life expectancies have converged in most industrialized societies in
recent decades. To achieve coherent forecasts between females and males, this
convergence needs to be considered when forecasting sex-specific mortality. We
introduce a model forecasting a matrix of the age-specific death rates of sex ratio,
decomposed into two age profiles and time indices—before and after age 45—using
principal component analysis. Our model allows visualization of both age structure and
general level over time of sex differences in mortality for these two age groups. Based
on a prior forecast for females, we successfully forecast male mortality convergence
with female mortality. The usefulness of the developed model is illustrated by its
comparison with other coherent and independent models in an out-of-sample forecast
evaluation for 18 countries. The results show that the new proposal outperformed the
other models for most countries.
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Introduction
Females have had longer life expectancies than males in industrialized societies and
females also outlive males in most developing countries today (Austad 2006; Barford
et al. 2006; Glei and Horiuchi 2007). This universal disparity has fascinated researchers
for decades, and the present consensus considers that the sex gap in life expectancy has
biological underpinnings that are modulated by social, behavioral, and environmental
conditions (Kingston et al. 2014, 2015; Van Oyen et al. 2013; Oksuzyan et al. 2008; Kalben
2000; Luy 2003).
Biological factors might play a role in sex differences in mortality, but they cannot

explain observed variations over time and across countries (Gjonça et al. 1999; Nathanson
1984). These variations have been mainly associated with non-biological factors. It has
been established that men engage more in risky behaviors, including a higher level of
tobacco, alcohol, and psychoactive substance use, less safe driving, and less healthy nutri-
tion, thus increasing the risks of various morbid conditions and death (Wardle et al. 2004;
Waldron 1983). Tobacco consumption is the largest identifiable factor behind the increase
in sex differences in mortality in the developed countries, with other risk factors having
less significant, separate effects (Lindahl-Jacobsen et al. 2013; Leon 2011; Jacobsen et al.
2008; Katanoda et al. 2008; Preston and Wang 2006; Payne 2004; Pampel 2003; Morris
1955).
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Before the 1940s, in industrialized countries, sex differentials in life expectancy were
rather constant, but started to increase afterwards due to a faster increase in female life
expectancy compared to males (Luy and Wegner-Siegmundt 2013; Thorslund et al. 2013;
Morris 1955; Raftery et al. 2014). However, since the 1970s–1980s, the sex gap in mor-
tality has decreased in most industrialized countries. This convergence appeared because
females and males had more similar health-related behaviors—e.g., tobacco consumption
decreased for males, but increased for females (Lindahl-Jacobsen et al. 2016; Janssen and
van Poppel 2015; Trovato and Lalu 2007; Gjonça et al. 2005; Meslé 2004a). One country
of exception to this convergence of the sexes is Japan, where the female-male differences
in life expectancy continued to increase until the beginning of the 21st century (Meslé
2004a).
Sex differences in mortality have not, however, declined at all ages for all countries.

Meslé (2004a) pointed out that the sex ratio (SR) of the age-specific death rates (ASDR)
is generally represented by a peak and a hump. The peak, around age 20, is the result
of higher accidental mortality for males. The hump, covering ages from 45 to 75, is the
result of higher cancer mortality for males (Meslé 2004a). The SR of the ASDR has been
a commonly used indicator to study mortality differences between females and males,
as it offers a clearer picture of the disparities by age than the absolute sex differences of
the ASDR—i.e., the ratio is less sensitive to mortality level and shows the relative male to
female differences (Beltrán-Sánchez et al. 2015; Meslé 2004a; Dublin et al. 1949). Meslé
(2004a) noticed that the peak and the hump do not always behave similarly over time.
Figure 1 illustrates the peak and the hump of SR at two points in time, showing the average
SR for 18 countries for the periods 1970–1979 and 2000–2009. The figure shows that, on
average, the peak has increased, while the hump has decreased between 1970–1979 and
2000–2009.
When forecasting mortality by sex, mortality convergence between females and males

should be considered. As mentioned by Li and Lee (2005), forecasting separately, the

Fig. 1 Average sex ratio of the age-specific death rates for 18 countries for the periods 1970–1979 and
2000–2009. Source: HMD (2017) and own calculations. Note: The selected countries are Australia, Austria, Belgium,
Denmark, Finland, France, Germany, Ireland, Japan, the Netherlands, New Zealand, Norway, Portugal, Spain,
Sweden, Switzerland, UK, and the USA
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mortality of two populations tends to increase their differences, even when using sim-
ilar methods. Thus, mortality trends by sex should not be forecasted independently
and convergence between sexes should be taken into account. Non-divergent forecasts
are often labeled as coherent forecasts. Different models have been introduced to fore-
cast mortality patterns for subpopulations coherently (Li and Lee 2005; Schinzinger
et al. 2016; Bohk-Ewald and Rau 2017; Hyndman et al. 2013; Raftery et al. 2012, 2014;
Cairns et al. 2011; Torri and Vaupel 2012; Bergeron-Boucher et al. 2017; Pascariu
et al. 2017; Janssen et al. 2013; Li 2013; Russolillo et al. 2011; Shang 2016; Shang
et al. 2016; Shang and Yang 2017. These models are generally based on the idea of fore-
casting a mortality trend common to all populations of interest (e.g., an average (Li and
Lee 2005), product (Hyndman et al. 2013) or highest level (Torri and Vaupel 2012))
and the population-specific deviation from the common trend. When forecasting mor-
tality for females and males coherently, an extra constraint may also be acknowledged:
If females are assumed to have a biological advantage, they can be expected to con-
tinue to have lower mortality than males in the future, unless drastic changes occur in
terms of health-related behaviors that would disadvantage women or give an advantage
to men.
Many coherent forecast models are extensions of the Lee-Carter (Lee and Carter

1992) model (e.g., (Hyndman et al. 2013; Li and Lee 2005; Russolillo et al. 2011; Li
2013)). These models are thus susceptible to carrying some of the Lee-Carter (LC)
model limitations, such as its assumption of constant rate of mortality improvement
(Booth and Tickle 2008; Lee and Miller 2001). This aspect of the model is due to
the use of a fixed age profile of mortality change, which tends to under-predict life
expectancy, leading to more biased forecast (Bergeron–Boucher et al. 2017; Booth et al.
2002; Booth and Tickle 2008; Kannisto et al. 1994). Other models, such as those fore-
casting the life table density of death (Oeppen 2008; Bergeron–Boucher et al. 2017) or
using rotation of age profiles (Li et al. 2013; Ševčíková et al. 2016) overcome such a
limitation.
In this paper, a new model to forecast male mortality coherently with a female

forecast is suggested and builds on the work of Li and Lee (2005), Hyndman et al.
(2013), and Shang (2016). Hyndman et al. (2013) forecast the product of female and
male ASDR, representing a common trend, and their ratio, representing the difference
between sex-specific mortality. The authors state that the product-ratio model is simple
and flexible in its dynamic, and the overall accuracy of the model remains compara-
ble to the accuracy of independent models. However, the authors also point out that,
with their model, the accuracy of males’ forecast is improved at the expense of that of
females (Hyndman et al. 2013). Similar results are found by Shang (2016) when com-
paring the forecast accuracy between independent functional data model (Hyndman
and Ullah 2007) and his coherent multilevel functional data model. In this paper, we
suggest using a ratio approach to forecast male mortality, based on a prior female fore-
cast. The accuracy of female independent forecasts will then remain unchanged, and
male mortality will be forecast based on their age-specific mortality differences with
females. Raftery et al. (2014) and Pascariu et al. (2017) also used a similar strategy,
by modeling and forecasting the sex gap in life expectancy. Furthermore, by using a
ratio approach based on any prior female forecasts by age, including non-LC type,
less biased forecasts for both females and males could potentially be provided. The
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age-specific sex ratio before and after age 45 are also modeled and forecasted sepa-
rately, to consider the differences in time trends between the peak and the hump of
the SR.
This article is divided into seven sections. In the next section, we introduce the

data, followed by the “Methods” section. In the fourth section, the underlying assump-
tions and interpretation of the parameters of the model are presented. The “Results”
section follows, which includes an evaluation of the method, in comparison with
other forecasting models, and the mortality forecasts until 2050. The “Discussion and
Conclusion” comprise the final sections.

Data
The data source used is the Human Mortality Database, HMD (2018), which offers high-
quality historical mortality data for industrialized countries (Barbieri et al. 2015). The
HMD provides data from 39 countries, but the models are tested for low-mortality coun-
tries only. Eastern European countries have comparatively high mortality, characterized
by breaks and upturns which are more problematic to forecast with common forecasting
methods (Meslé 2004b; Fazle Rabbi and Mazzuco 2017). We then selected the remain-
ing countries with data available between 1960 and 2013 and which have a population of
more than half a million people. Themethod is then applied to forecast themortality of 18
industrialized low-mortality countries: Australia (AUS), Austria (AUT), Belgium (BEL),
Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU)1, Ireland (IRL), Japan
(JPN), The Netherlands (NLD), New Zealand (NZL), Norway (NOR), Portugal (PRT),
Spain (ESP), Sweden (SWE), Switzerland (CHE), United Kingdom (UK), andUnited States
America (USA).
We use the HMD period death counts and exposure to risk to calculate the

life tables from 1960 to 2013. Mortality above age 95 has been smoothed using a
Kannisto model (Thatcher et al. 1998), as used also in the HMD (Wilmoth et al.
2007), to avoid problems with 0 values at higher ages. The multiplicative replace-
ment strategy suggested by Martín-Fernández et al. (2003) to treat zero counts, also
applied by Bergeron-Boucher et al. (2017), was used to avoid 0 values at younger
ages.

Methods
We suggest that male mortality be forecasted using the logarithm of the SR of the
ASDR. Hyndman et al. (2013) used the SR to forecast mortality, based on a product-
ratio method. The authors model and forecast the geometric mean of female and
male ASDR (product) and the square root of their ratio using principal compo-
nent analysis. The product component of their model can be considered as a com-
mon trend, similar to that suggested by Li and Lee (2005), and the ratio-component
represents the difference between sex-specific mortality. Shang (2016) and Shang
et al. (2016) also introduced a similar approach, the multilevel functional data method,
which can be seen as an extension of the Li-Lee model and the product-ratio
(Hyndman et al. 2013) model, using Bayesian methods (Shang 2016; Shang et al.
2016). These models forecast an average (or product) and the population-specific
deviation from the average. More details about these models are provided in
Appendix A.
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The sex-ratio (SR) approach

The introduced model builds on the work of the Li and Lee (2005), Hyndman et al.
(2013), and the multilevel functional data method (MFDM) of Shang (2016) and Shang
et al. (2016). However, the sex ratio model proposed here differs from these models by
two main aspects: (1) male mortality is forecasted based on a prior female forecast rather
than an average (as also suggested by Raftery et al. (2014); Pascariu et al. (2017)), by mod-
eling and forecasting the sex ratio directly; and (2) the sex ratio before and after age 45 are
forecasted separately—i.e., the peak and the hump of the SR, as defined by Meslé (2004a),
are modeled separately.
The first modification is applied to avoid losing accuracy in the females’ forecasts

(Hyndman et al. 2013; Shang 2016). We do not impose any specific prior female fore-
cast in the model to allow for more flexibility and less bias forecasts. It can be argued
that the forecast of the product component in the HBY model and common factor in the
MFDM and LL models are similar to the LC model. Thus, these models are susceptible
to carry the bias of the LC model. Here, we suggest that female mortality be forecasted
with any model forecasting mortality by age, including other models than the LC and its
extensions.
The second modification is applied for two reasons. First, sex differences in mor-

tality at young ages can have different trends and causes than those at older ages.
We thus model and forecast separate trends for the male excess accident mortality
and the male excess cancer mortality (Meslé 2004a). Age 45 is selected as a thresh-
old between the peak and the hump, as the minimum point between the peak and the
hump occurs around this age, as discussed in Appendix B. Second, the use of a unique
time index for all ages found with a singular value decomposition (SVD) tends to be
more strongly influenced by ages having higher values of the centered logged SR (see
Eq. (1) below). Appendix B shows that the age group 0–44 tends to have an important
impact on a unique time index. As mortality reductions at older ages have more influ-
ence on improvements in life expectancy in recent years (Christensen et al. 2009), the
use of a unique time index might not capture adequately the changes in the SR at these
influential ages.
As a result, a centered matrix of the logged SR of the ASDR by time t and age x is

decomposed into two age profiles and time indices of the males to females ratio:

SRxt = ln
(
mM

xt
mF

xt

)
= μx + I(x < 45) [γtφx] + I(x ≥ 45)[�t�x]+εxt (1a)

mM
xt = mF

xte
SRxt = mF

xt e
μx+I(x<45)[γtφx]+I(x≥45)[�t�x]+εxt , (1b)

where mF
xt and mM

xt are the ASDR for females and males, respectively, and εxt is the error
term. The parameter μx is the average logged SR and φx and �x are age profiles of the SR,
before and after age 45 respectively. The age profiles indicate the rate of change in the SR,
oncemultiplied by their respective time indices. The parameters γt and�t are time indices
of the SR and indicate the general level of the sex gap at time t. The model parameters
are the normalized first singular vectors of the peak and the hump. They are found with
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a SVD applied to a centered matrix of the logged SR
(
ln

(
mM

xt
mF

xt

)
− μx

)
, after being divided

into the two selected age groups. The normalization procedure is as suggested by Lee and
Carter (1992), so that

∑
γt = 1,

∑
�t = 1,

∑
φx = 0, and

∑
�x = 0. The term I is

an indicator function equal to 1 when the associated condition in the bracket is true and
0 when false. An adjustment for the jump-off year has been made using the method of
Bergeron-Boucher et al. (2017).
The functional approach of Hyndman and Ullah (2007) used in the HBY

(Hyndman et al. 2013) and MFDM (Shang 2016; Shang et al. 2016) models is here
set aside, because the second or higher singular vectors (or principal components) are
often harder to extrapolate—i.e., we found, in general, that the higher components
of the prior models are often not linear and do not increase the explained vari-
ance by much (Bergeron–Boucher et al. 2017). Furthermore, in the “Methods” section,
we test the SR model assumption (described below) by calculating the correlation
between the females and males’ mxt trends and the in-sample errors. Performing a
first analysis on non-smoothed data was thus preferred in order to avoid inflated
correlation. However, a functional approach could easily be used, as presented by
Hyndman et al. (2013).

Assumptions

Assumption 1: female andmale ASDR are correlated and change proportionally

In Eq. (1b), the male ASDR are correlated with the female rates, meaning that, as
long as the female ASDR are decreasing, the male ASDR will also keep decreasing.
This implies that mortality improvement observed among females will also be noticed
among males, but at different levels over ages and time, as determined by the param-
eters: μx, φx, �x, γt , and �t . The term eμx+I(x≤45)[γtφx]+I(x>45)[�t�x]+εxt should remain
higher than 1, ensuring that female mortality is lower than male mortality. To reach
coherence, the parameters γt and �t should be forecasted as a stationary process. We
use ARMA models with the best AIC to forecast γt and �t , as similarly suggested by
Hyndman et al. (2013).
It is important to note that, by using the SR model, we assume not only that female

and male ASDR trends are correlated, but that they also decrease proportionally to
one another—i.e., there are multiplicative changes. This implies that, even if the model
parameters in Eq. (1) stay at a constant value over time, a decrease in female mor-
tality will drive a decrease in male mortality and the absolute sex gap will still be
reduced.

Assumption 2: independent female forecasts aremore accurate thanmales

To forecast mortality with the model presented in Eq. (1a), the ASDR for one of the
sexes should be forecasted beforehand, using any mortality forecasting model by age—for
example, the LC model (Lee and Carter 1992). Female life expectancy forecasts are gen-
erally more accurate (Booth et al. 2006), and as pointed out by Hyndman et al. (2013), the
product-ratio model increases the accuracy for males and decreases it for females. Simi-
lar results were also found by Shang 2016. We thus suggest forecasting female mortality
beforehand and then forecasting male ASDR, as presented in Eq. (1b). However, in the
“Results” section, we also evaluate the performance of the forecast when male mortality
is forecasted first and female mortality is forecasted using Eq. (1a).
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Prediction intervals

The prediction intervals (PI) are drawn based on simulations with resampled errors of
the model used to forecast the time indices of females and of the SR (γt and �t). This
method allows for a consideration of the two main sources of uncertainty of the model:
(1) errors from the SR model presented in Eq. (1b), and (2) the errors from the prior
female forecast. More details on how the PI are constructed are given in the “Appendix” C
section.

Comparison with other models

To assess the model’s performance, we compare the SRmodel, using diverse prior models,
with existing forecasting models. We classify the forecast models into three categories:
sex-independent models, other sex-coherent models, and the SR coherent model.

1. The sex-independent models are mortality forecasting methods that do not
consider the coherence between females and males. We compare five to six
models, depending on the sex, in this category:

(a) LC: Lee-Carter model (Lee and Carter 1992).
(b) LCCC: Li-Lee model (Li and Lee 2005) for country-coherent (CC)

forecast, using an average for industrialized countries.
(c) FDA: Functional Data approach for mortality forecast (Hyndman and

Ullah 2007), using the R package demography (Hyndman et al. 2014).
(d) CoDa: Compositional Data Analysis model (Oeppen 2008).
(e) CoDaCC: CoDa-coherent model for country-coherent forecast, using an

average for industrialized countries (Bergeron–Boucher et al. 2017).
(f) UN: Bayesian hierarchical model for probabilistic projections used by the

United Nations (Raftery et al. 2012; United Nation 2017), using the
bayesLife R package (Sevcikova et al. 2017). This model is used to forecast
female mortality only as performed by the United Nations (Raftery et al.
2014; United Nation 2017).

2. The other sex-coherent (OSC) models are models considering the coherence
between sexes, and which have been previously developed. We compare four to
five of these models, depending on the sex:

(a) LCSC: Li-Lee model for sex-coherent (SC) forecast, i.e., using an average
for female and male mortality.

(b) CoDaSC: CoDa-coherent model for sex-coherent forecast, also using an
average for female and male mortality.

(c) HBY: The product-ratio approach of Hyndman et al. (2013), using the R
package demography (Hyndman et al. 2014).

(d) MFDM: Multilevel functional data method (Shang 2016; Shang et al.
2016), using the R package ftsa (Hyndman and Shang 2017).

(e) UN: Joint probabilistic projections used by the United Nations
(Raftery et al. 2014; United Nation 2017), using the bayesLife R package
(Sevcikova et al. 2017). This model is used to forecast male mortality
coherently with the UN-female forecast (Raftery et al. 2014).
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3. The SR coherent model is defined in Eq. (1). The prior models used are the five
independent models defined in point 1a to 1e. In the following sections, these
models have the abbreviation SR followed by the abbreviation of the prior model
used. For example, if the male mortality is forecasted with the SR model, with the
prior female forecast being the LC model, then this method will be written as
SR-LC.

Themodel: assumption, interpretation, and goodness of fit
Female-male mortality correlation

The main assumption behind the model presented in Eq. (1) is that the death rates from
both sexes are correlated: when the death rates of females decrease, death rates of males
will also decrease. To test if this assumption holds, we calculate the Pearson’s correla-
tion coefficient (R) for the female and male mortality trends over time, at each age. The
RV coefficient for females’ and males’ death rate matrices have also been calculated for
each country. The RV coefficient is a generalization of the squared Pearson’s correlation
coefficient to multivariate data.
For all countries and at almost all ages, the R is positive, meaning that female and

male mortality trends are going in the same direction. Figure 2 shows that the female-
male trends are strongly correlated (R > 0.7) between ages 0 and 10, and between ages
40 and 90 for most countries. Only Denmark and the Netherlands show a weaker cor-
relation between ages 70 and 80, but it can still be considered a moderate correlation
(0.5 < R < 0.7). The RV coefficient for each country also suggests a strong correlation
between females’ and males’ mortality matrices, with a value above 0.99 for all countries.
Between ages 10 and 40, the R is considered strong for five countries (Austria, France,

Germany, Japan, and the Netherlands) and shows a strong to moderate correlation for
eight other countries. However, the remaining five countries, i.e., Denmark, Finland,

Fig. 2 Age-specific correlation coefficient for the female and male death rates trends over time for 18
countries and RV coefficient, 1960–2013. Note: The countries are ordered from low to high averaged correlation
coefficient over age
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Ireland, New Zealand, and Norway, recorded a relatively weak correlation between female
and male mortality trends at these ages (− 0.1 < R < 0.5). Only Ireland between
ages 24 and 26 had a negative R. Two explanations can contribute to understanding the
weak female-male correlation at these ages for these five countries: (1) their popula-
tions are relatively small and more variation is recorded at these ages where mortality
is low and (2) stagnation, slower decrease, and even an increase of the mortality trends
for one of the sexes are observed, while the mortality trends of the other sex have been
decreasing. These results might weaken the underlying assumption of the model. How-
ever, the number of deaths between ages 10 and 40 is often small—for example, less
than 4.5% of the deaths occurred between these ages in 1960, and less than 2.5% in
2013, for Denmark, Finland, Ireland, New Zealand, and Norway. The errors in modelling
and forecasting mortality at these ages should have a lesser impact on life expectancy
changes. Thus, it is reasonable to assume that female and male mortality trends are
correlated.

Interpretation of parameters

The parameter μx is the age-specific average logged SR. It captures the average shape and
level of the logged SR for each country. The time indices and age profiles indicate how
μx is altered at each age over time. The interpretation of the time indices (γt and �t) and
the age profiles (φx and �x) in Eq. (1) are connected. The age profiles indicate the rates of
change of the age-specific SR, once multiplied by the time indices. The time indices are
indices of the general level of the SR over time. Once combined, the age profiles and time
indices tell us the direction and intensity of the SR change over time, at each age. The
interpretation of each combination of parameters are as follows:

• If φx and �x are positive, and γt and �t are increasing, the age-specific SR is
increasing.

• If φx and �x are positive, and γt and �t are decreasing, the age-specific SR is
decreasing.

• If φx and �x are negative, and γt and �t are increasing, the age-specific SR is
decreasing.

• If φx and �x are negative, and γt and �t are decreasing, the age-specific SR is
increasing.

The age profiles and time indices differ between countries. Figure 3 shows the param-
eters for Germany, the Netherlands, Portugal, and the USA, as they represent well the
different possible patterns observed. If we first look at the Netherlands, the average logged
SR shows a clear peak and a clear hump. The peak has been decreasing (decreasing γt and
positive φx) over all the years selected and the decrease has beenmore pronounced before
age 25. Between age 25 and 44, the SR stayed approximately constant, as φx is close to 0.
The SR have been decreasing between age 45 and 70 since the 1970s. However, they have
been increasing after age 70, represented by a negative �x and decreasing �t . Such pat-
terns of�x, i.e., positive and then negative, generally represent a shift of the hump towards
older ages.
When looking at Portugal and the USA, μx has a less pronounced hump. For both these

countries, the SR between age 0 and 44 have been increasing until the mid-1990s, and
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a b c

Fig. 3 Model parameters—φx and γt in blue and �x and �t in red—for Germany, the Netherlands, Portugal,
and the United States. a Average logged SR, b Age profiles, c Time indexes

since started to decrease. However, the SR after age 45 have been behaving differently
between these two countries. The SR for Portugal at these ages have been increasing over
the observed period. At these same ages, the SR for the USA have been decreasing since
the late 1970s and have leveled off since 2000.
Finally, when looking at Germany, μx is also represented by a clear peak and a clear

hump. Between age 0 and 25, the SR have been decreasing, but have been increasing
between age 25 and 45. The SR above age 45 have been increasing until the late 1980s and
since started to decrease.
As mentioned previously, we estimated an age profile and time index for the peak and

the hump of the SR. This strategy is used because the time indices sometimes behave
differently. As shown in Fig. 3, γt and �t for Portugal and the USA have different trends,
stressing the need to use separate parameters for these age groups, as further shown in
the Appendix B section.

Goodness of fit

To assess the goodness of fit of a model, the box plot of residuals has been consid-
ered a useful tool, more than the explained variance (Russolillo et al. 2011; Renshaw and
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Haberman 2003). Figure 4 plots the residuals of the SR model by age. The box plots
show that the residuals have symmetric patterns at most ages, with the medians centered
around 0, suggesting that the model generally estimates quite well the SR trends at each
age. The figure also shows that the residuals are more important at younger than at older
ages. However, for the Netherlands and the USA, the residuals between ages 65 and 90
are more important than at some earlier ages.
Figure 5 helps in understanding these patterns. The figure shows the SR trends observed

and fitted with Eq. (1) at specific ages. More random variation is observed among the SR

Fig. 4 Box plots of the model residuals for Germany, the Netherlands, Portugal, and the United States
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Fig. 5 Sex ratio observed (dashed) and fitted (full line) with the SR model for Germany, the Netherlands,
Portugal, and the United States at ages 0, 15, 30, 44, 45, 60, 75, and 90

at young ages, explaining the greater residuals. While the model suggested in Eq. (1) fits
quite well with the data for Germany and Portugal at most ages, the residuals are more
important for the Netherlands, especially between ages 60 and 90. As mentioned earlier,
�t for the Netherlands started decreasing in the 1970s. However, this turning point in
the SR trends is not the same at all ages. More precisely, the turning point occurred later
in time for older ages. This generally produced a shift in the hump of μx. As mentioned
earlier, this pattern will be reflected by a positive �x at younger ages and a negative �x at
older ages, when �t is decreasing. As shown in Fig. 5, the introducedmodel presents more
challenges in modeling such patterns. Similar phenomena were observed for Norway and
moderately so for the USA, Australia, Great Britain, and New Zealand.
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Results
Out-of-sample evaluation

To evaluate the performance of the proposed model, in comparison with the indepen-
dent and other coherent models listed in the “Comparison with other models” section,
we forecast the life expectancy over a 15-year horizon, i.e., from 1999 to 2013, based on
the reference period 1960–1998, with all models. Figure 6 presents the mean absolute
error (MAE) and Fig. 7 presents the mean error (ME) for the forecast life expectancy. The
former is a measure of accuracy, while the latter is a measure of bias of the forecast.

a

b

Fig. 6 Mean absolute error (MAE) on forecasting the life expectancy at birth using different models (and prior
models of the opposite sex for the sex ratio) for the period 1999–2013, mean over countries bymodel and number
of countries with the lowest MAE by model, 18 industrialized countries. a Females and bMales
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a

b

Fig. 7 Mean error (ME) on forecasting the life expectancy at birth using different models (and prior models
for of the opposite sex the sex ratio) for the period 1999–2013, mean over countries by model and number of
countries with the lowest ME by model, 18 industrialized countries. a Females and bMales

Figure 6a shows that the independent models would have been, on average, more accu-
rate in forecasting female life expectancy between 1999 and 2013, especially the LCCC
and CoDaCC models. The other sex-coherent models and the sex ratio model tend
to offer somewhat poorer accuracy. However, independent models would have outper-
formed the sex-coherent models for only 56% of the countries (10 out of 18 countries) for
females. Figure 7a shows that the other coherent models and the sex ratio models tend to
increase the bias, which is already present in some of the independent models. The LC
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and LCCC are known to produce too pessimistic forecasts of life expectancy, as shown
by a negative ME (Booth and Tickle 2008; Booth et al. 2002; Bergeron–Boucher et al.
2017; Kannisto et al. 1994). Using a sex-coherent model based on an average—e.g., LLSC,
CoDaSC, MFDM, and HBY—tends to pull the female forecasts towards the male and to
underestimate evenmore their life expectancy at birth, when compared with the indepen-
dent models. The CoDaSCmodels, however, benefit from this “pulling effect” towards the
average as the CoDa model tend to overestimate life expectancy over the selected period
for females. Independent models would have produced least bias forecast for 72% of the
countries (13 out of 18 countries).
The results for males differ from those for females. The independent models perform

rather poorly, under-predicting life expectancy. The coherent models tend to perform
better, and especially the SRmodel. Using an SRmodel would have offered the most accu-
rate forecasts for males for 15 out of 18 (83%) countries, with the exceptions being France
(FDA), Japan (CoDaCC), and the USA (MFDM). Regardless of the prior female forecast
model, the SR model would have generally increased the accuracy and reduce the bias of
the male forecasts for the period 1999–2013. The advantage of the SR model is especially
visible when the model is compared with an independent or other sex-coherent coun-
terpart, e.g., when comparing the SR-LC models with the LC and LCSC models, or the
SR-CoDa with the CoDa and CoDaSC. However, the SRmodel still tends to under-predict
life expectancy for males, on average, but the bias is greatly reduced compared with the
other sex-coherent and independent models.
Figure 8 shows an example of MAE for different forecast horizons, with the last year of

the forecast period being 2013 for the LC, LCSC, and SR-LC models. For example, if the
forecast horizon is 10, the forecast period is 2004–2013 and the reference period is 1960–
2003. The figure confirms the results of Fig. 6 for different forecast horizons. Independent
models tend to produce more accurate forecasts for females, except for the USA and the
Netherlands with a forecast horizon of 25 years. As mentioned earlier, coherent models
based on an average (or product) trends—e.g., LLSC, CoDaSC,MFDM, andHBY—tend to
decrease accuracy for females, but to increase it for males. For males, the SRmodel would
have been the most accurate for most forecast horizons for the four selected countries.
Similar results are shown in Fig. 13 of the Appendix D section, when comparing the CoDa,
CoDaSC, and SR-CoDa models.
Results from Figs. 6, 7 and 8 suggest that forecasting female mortality using indepen-

dent models and then using the SR model presented in Eq. (1) to forecast male mortality
coherently with the selected prior female forecast would have been the optimal solution
among the models compared.

Mortality forecasts until 2050

According to the results in Figs. 6 and 7, the CoDaCC model would have been the most
accurate and least biased but one (after CoDaCS) model to forecast females’ mortality.
Furthermore, using this samemodel as prior female forecasts when forecasting male mor-
tality with the SR model would have been the most accurate and second least biased
strategy for males’ forecasts. In this section, we will use the CoDaCC model to forecast
female mortality until 2050. For the male forecasts, we thus use the SR-CoDaCC (Eq. (1)).
Figure 9 shows the life expectancy at birth observed and forecast for Germany,

the Netherlands, Portugal, and the USA. The reference period is 1960–2013, and the
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Fig. 8 Mean absolute error (MAE) on forecasting the life expectancy at birth for a forecast horizon of 5, 10, 15,
20, and 25 years with the last year of the forecast period being 2013 with the LC, LCSC, and SR-LC models, for
Germany, the Netherlands, Portugal, and the United States, females and males

mortality is forecast until 2050. The SRmodel allowsmale life expectancy at birth to catch
up with female life expectancy. As γt and �t are forecast to eventually reach a constant,
male mortality stays higher than female mortality in the forecast.
By using a forecast model for females that considers coherence between countries, this

coherence is also reflected in the male forecast when using the SR model, as shown in
the Appendix E section. In 2013, the range of life expectancy at birth across countries
for males was 76.6–80.6, with a difference between the maximum and minimum values
of 4.0 years. By 2050, we predict that the range will be 3.3 years, with a maximum life
expectancy of 90.1 for Japan and a minimum of 86.8 for Germany. The SR model thus has
the ability to preserve in the male forecasts the coherence among countries integrated in
the female forecasts. Similar results are also found if the LCCCmodel is used as the prior
female forecast.
Figure 10 shows the sex differences in life expectancy at birth observed and forecast for

the four selected countries. The forecasts predict that females’ and males’ life expectancy
will keep converging over the forecast period. By 2050, the models predict that the sex
differences in life expectancy should be between 2.2 (New Zealand) and 3.5 (Japan) years
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Fig. 9 Life expectancy at birth observed (dots) and forecast (lines) from 2013 to 2050 with the CoDaCC
model for females and the SR-CoDaCC model for males with their 80% prediction intervals, for Germany, the
Netherlands, Portugal, and the United States

for all 18 countries. We also tested the model for longer forecast periods and found that
sex differences in life expectancy will converge towards 0, without crossing this limit. The
model thus preserves the female mortality advantage.
Figure 9 shows that the PI for males are wider than for females, due to the fact that the

forecast for males, when using Eq. (1), includes more sources of uncertainty, as detailed
in the Appendix C section. Furthermore, we see in Fig. 9 that the PI of females and males
sometimes cross, as further shown by a negative PI after a certain year in Fig. 10. Even
if the SR model ensures that females keep their advantage in the forecasts, no such con-
straints are included in the PI calculation so that the lower PI bound for females stays
higher than the upper PI bound for males. Such constraints could potentially be added.
However, it could be possible for males to have lower mortality than females; for example,
if women’s tobacco consumption were to increase and exceed that of men.

Discussion
In this article, we introduced a new model to forecast male mortality coherently with a
prior female forecast by age. In an out-of-sample forecast, our model would have been
able to predict more accurately the recent male mortality trends than other sex-coherent
or sex-independent models, while preserving the female advantage in the forecasts.
The model hypothesizes that male mortality evolves proportionally to female age-

specific death rates. This assumption implies that females and males benefit from similar
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Fig. 10 Sex differences in life expectancy at birth observed (dots) and forecast (lines) from 2013 to 2050
resulting from forecasting females’ mortality with the CoDaCC model and that of males with the SR-CoDaCC
model, with the 80% prediction intervals, for Germany, the Netherlands, Portugal, and the United States

improvements in living conditions and health care, but also suffer similar obstacles
to bring mortality rates further down. However, due to different biological and non-
biological factors, male mortality stays at higher levels. These sex differences in mortality
are determined by the model parameters. As the SR model assumes a proportional
decrease of the ASDR of females and males, the absolute difference between females
and males will continue to decrease, as long as the females’ ASDR decreases. Under this
assumption, the limit to the sex difference in life expectancy is 0. In order to have a limit
higher than 0 with the SR model, assumptions have to be made about the lower level that
the death rates at each age can reach.
By forecasting females first, independently from males, the model also implies that the

common mortality improvements between sexes are best perceived and estimated by the
female mortality trends. Raftery et al. (2014) and Pascariu et al. (2017) also used a similar
strategy to forecast the life expectancy gap between female and male. Our results con-
firm that commonly used forecasting models forecast the female mortality trends more
accurately than those of males. As mentioned previously, the LC model and its exten-
sions often carry a negative bias and thus tend to underestimate future life expectancy.
This bias is especially visible for males. The CoDa model and its coherent extensions are
less biased, but still tend the underestimate future life expectancy for males. These results
can raise questions about how adequately these models can capture mortality trends and
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extrapolate them. The SR model can thus be seen as a flexible method to reduce the bias
for males, without losing accuracy in the females’ forecast.
By using a prior female forecast instead of an average, the accuracy of the male forecast

depends on the accuracy of the selected forecast model for females. As a consequence,
the uncertainty of the female forecast should be reflected in the male forecast, leading to
wider PI for males than for females. Despite this limitation, the SR model has shown to
increase greatly the accuracy of male forecasts. Its flexibility in terms of prior model can
be an advantage, allowing the use of a model that is less biased than the LC. Furthermore,
the coherence between countries imposed by using a female forecast model considering
coherence among these populations is reflected in the male forecasts, when using the SR
model. The SR model can thus allow for both sex and country-coherent forecasts.
A limitation of the model is the absence of covariates to estimate the age-specific SR

changes over time. Sex differences in mortality are determined by the differential risk
factors between females and males associated with health-related behaviors (Kingston
et al. 2014, 2015; Van Oyen et al. 2013; Oksuzyan et al. 2008; Trovato and Lalu 2007;
Gjonça et al. 2005;Meslé 2004a; Kalben 2000). For example, a reasonable statement would
be that forecasting sex differences in mortality should be based on disparities in tobacco
and alcohol consumption between females and males (Janssen et al. 2013). These patterns
are, however, often harder to forecast than the aggregated measures; their relationship
with mortality is often miscalculated and assumptions about future behaviors are often
required (Raftery et al. 2014; Booth and Tickle 2008). Until reasonable strategies to over-
come these limitations are found, forecasting aggregated measures tends to provide more
reliable forecasts (Alho 1991; Wilmoth 1995). Also, the model cannot capture selection
effects acting on specific cohorts and how they affect time trends in mortality and sex
ratios. However, such effects will tend to be population-specific and not within the scope
of the presented SR model, which aims to introduce a general forecast approach based on
sex differences in mortality for low mortality countries.
Given that our model does not include the actual risk factors responsible for sex dif-

ferences in mortality, the model parameters could be seen as proxy of the effect of the
combined risk factors on sex differences in mortality. Once the age profiles are combined
with their respective time indices, we can approximate how these age-specific effects are
changing over time. By using two time indices, we differentiate between the changes in
the SR before and after age 45. Age 45 was used as the threshold because it separates the
peak and the hump ofμx, and the accidental excess mortality from the cancer excess mor-
tality for males (Meslé 2004a). As shown in the “Interpretation of parameters” section,
time trends for these two age groups sometimes have different patterns. More age groups
could be used if judged necessary, e.g., to differentiate the SR pattern for infancy from the
other age groups.
Wemake the hypothesis that, due to their biological advantage, females shouldmaintain

lower mortality than males in the future. Additionally, despite the fact that females’ and
males’ health-related behaviors have become more similar in recent years, males are still
more disadvantaged by these non-biological factors, under current observations (Trovato
and Lalu 2007;Meslé 2004a;Wardle et al. 2004). However, under certain conditions, males
could have lower mortality than females, for example, if females increase in tobacco con-
sumption were to exceed that of males while all the other risk factors associated with sex
differences in mortality remain constant. Our model could be adapted to such a scenario,
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if believed reasonable, by forecasting the time indices as non-stationary processes and so
that, in Eq. (1b), the expression eμx+I(x≤45)[γtφx]+I(x>45)[�t�x]+εxt stands between 0 and 1.

Conclusion
A new model to forecast male mortality coherently with a female forecast is introduced.
The SR model has proved to be a flexible model, by allowing the use of many models to
forecast female mortality by age as prior and to forecast male mortality coherently with
it, including less biased models than the Lee-Carter model and country-coherent models.
It also allows for a differentiation between the SR trends due to accidental and cancer
male excess mortality. The model acknowledges the female mortality advantage at all ages
among industrialized countries and preserves this in the forecast. It is shown that the SR
approach to forecasting mortality would have increased the accuracy of the male forecast
for the period 1999–2013 for 83% of the selected countries.

Endnote
1 The HMD provides data for Germany starting in 1990 only, but offers data for East

and West Germany separately since 1956. To have a longer time series for Germany, we
combined death counts and exposure to risk data for East and West Germany.

Appendix A: Other models
In this section, a brief summary of some of the models mentioned in the paper is
presented.

Lee-Carter model (LC)

ln (mxt) = αx + βxκt + εxt (2)

with

• mxt is the death rates at age x and time t.
• αx is the age-specific average of the logged death rates.
• βx is the normalized first singular vector of the age mode found with an SVD applied

to the center log(mxt) matrix.
• κt is the normalized first singular vector of the time mode found with an SVD applied

to the center log(mxt) matrix.
• εxt is the error term.

Functional data approach (FDA)

The functional data approach (Hyndman and Ullah 2007) expand on the Lee-Carter
model:

fxt = μx +
K∑

k=1
βtkφxk + εxt (3)

with

• fxt is the smoothed logged death rates at age x and time t, using weighted penalized
regression splines.

• μx is the age-specific average of the logged death rates.
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• φxk is a set of orthonormal basis functions found with a robust functional principal
component analysis.

• βtk are a set of univariate time series, k = 1, ...,K .
• εxt is the error term.

Li-Lee model (LL)

The Li-Lee model (Li and Lee 2005) is an extension of the Lee-Carter model to forecast
multiple populations coherently.

ln (mxti) = αxi + βxκt + bxikxi + εxti (4)

with

• mxti is the death rates at age x, time t and population i.
• αxi is the age-specific average of the logged death rates for population i.
• βxκt is the common factor for all populations found by applying the LC model to an

average mortality of a group of population.
• bxikxi are the normalized first singular vectors, found by applying an SVD to the

matrix ln (mxti) − αxi − βxκt ; they are the population-specific deviation factor from
the common factor.

• εxti is the error term.

Product-ratio model (HBY)

The product-ratio model (Hyndman et al. 2013) expand both on the LL and FDA. For a
two-population application, the model is written as follow:

fxti = log (pxtrxt) = μx + ηx +
K∑

k=1
βtkφxk +

L∑
l=1

γtl�xl + εtx + wtx (5)

with

• fxti is the smoothed logged death rates at age x, time t and population i, using
weighted penalized regression splines.

• pxt is the square root of the product of fxti over population where i = 1, 2 and
pxt = √

fxt1fxt2.
• rxt is the square root of the ratio of fxti over population, with rxt = √

fxt1/fxt2.
• μx is the age-specific mean of the product.
• ηx is the age-specific mean of the ratio.
• φxk and �xl are the principal components after decomposing pxt and rxt , respectively,

using the weighted principal components algorithm.
• βtk and γtl are the corresponding principal component scores.
• εxt and wxt are the error terms, from the product and ratio respectively.

Multilevel functional data method (MFDM)

The multilevel functional data method (Shang 2016; Shang et al. 2016) expend on the
HBY and LL model.

fxti = μx + ηxi +
K∑

k=1
βtkφxk +

L∑
l=1

γtil�xil + εxti (6)

with
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• fxti is the smoothed logged death rates at age x, time t and population i, using
weighted penalized regression splines.

• μx is the age-specific mean of the average mortality.
• ηxi is the population-specific deviation from the average mortality.
• βtkφxk is the common factor for all populations, using K principal component scores.
• γtil�xil is the population-specific deviation from the common trends, using L

principal component scores.
• εtxj is the error term.

The main difference between the product-ratio and the multilevel functional data
methods is that the latter uses Bayesian methods to forecast and estimate the PI while
the former uses the normality assumption (Shang 2016). The number of principal
components are also not chosen in the same way between these two models.

Compositional data model (CoDa)

The CoDa approach can be seen as a Lee-Carter model applied to the life table deaths
(Oeppen 2008).

clr (dxt � αx) = βxκt + εxt (7)

with

• dxt is the life table death at age x and time t.
• clr is the centered log-ratio transformation, with

clr (dxti) = ln
(
dxt/

[∏X+1
x=0 dxt

]1/(X+1)
)
.

• αx is the age-specific geometric mean of the life table deaths.
• βx is the first singular vector of the age mode found with an SVD applied to the

matrix clr (dxt � αx).
• κt is the singular vector of the time mode multiplied by the first singular value found

with an SVD applied to the matrix clr (dxt � αx).
• εxt is the error term.

Coherent compositional data model (CoDaC)

The CoDa-coherent model expands both on the CoDa and LL models (Bergeron–
Boucher et al. 2017).

clr
(
dxti � αxi � C

[
eβxκt

]) = bxikxi + εxti (8)

with

• dxti is the life table death at age x, time t and population i.
• clr is the centered log-ratio transformation, with

clr (dxt) = ln
(
dxti/

[∏X+1
x=0 dxti

]1/(X+1)
)
.

• αxi is the age-specific geometric mean of the life table deaths for population i.
• βxκt is the common factor for all populations found by applying the CoDa model to

an average mortality of a group of population.
• bxikxi are the first singular vectors, found by applying an SVD to the matrix

clr
(
dxti � αxi � C

[
eβxκt

])
.

• εxti is the error term.
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Appendix B: Age 45 as threshold
Asmentioned in themain text, we use age 45 to separate the SR peak from the hump. This
age is also mentioned by Meslé (2004a) as the beginning of the hump. As an additional
analysis, we also calculated a quadratic regression on μx (average SR over time) between
age 25 and 60 and estimated the inflection point (or minimum) between these ages by
finding the age at which the derivative of the quadratic equation is equal to 0. The average
minimum among the 18 selected countries was estimated at age 45.98 with a confidence
interval (CI) of 44.70–47.26.
We use two age groups, because the time indices between these age groups tend to

differ. Furthermore, as mentioned in the main text, a unique time index for all ages tends
to be more strongly influenced by the age group 0–44, as shown in Fig. 11. However,
improvements in life expectancy in recent years are mainly driven by mortality reduction
at older ages (Christensen et al. 2009). Thus, separating SR trends before and after age 45
can be justified.

Appendix C: Prediction intervals
By using the model presented in Eq. (1), two main sources of uncertainty need to be con-
sidered for the forecast: (1) errors from the SR model presented in Eq. (1), and (2) errors
from the prior female forecast. For example, if we use the LC method to forecast female
mortality, the female ASDR will be estimated by:

ln
(
mF

xt

)
= αx + κtβx + εFxt , (9)

where αx is the average log-mortality over age; βx and κt are the age profile and time index
found by SVD and εFxt is the error. The male forecast, using Eq. (1a), will then be equal to:

ln
(
mM

xt
) = αx + κtβx + μx + I(x ≤ 45) [γtφx] + I(x > 45) [�t�x] + εxt + εFxt , (10)

Fig. 11 Time indices—γt in blue, �t in red and time index for all ages in black—for Germany, the
Netherlands, Portugal, and the United States
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where εxt is the error on fitting the SRmodel parameters to the logged SRmatrix ln
(
mM

xt
mF

xt

)
,

as shown in Eq. (1). Equation (10) is similar to that of Hyndman et al. (2013), where the
product forecast is replaced by a female forecast; only the first components are used (K =
L = 1) and two time indices and age profiles are estimated.
The PI are drawn based on simulations with resampled errors of the model used to fore-

cast the time index of females (κt) and of the SR (γt and �t). Assuming independence at
each age between both parts of the model, the PI can be found by adding to each sim-
ulation from the female forecast, the simulations from the SR forecast, as presented in
Eq. (10). The independence assumption between the two parts of the equation is reason-
able, as shown below. The life expectancy is calculated for each of the simulated death
rate trends and the PI are constructed using percentiles of these simulations. The uncer-
tainty of the prior female forecast will thus be reflected in the uncertainty of the male
forecast and should thus lead to wider PI for males. Many sex-independent forecast mod-
els, listed in Comparison with other models section as 1a, b, d, e, used as prior models,
are also based on an SVD and time indices extrapolation, similar to the LC model. Thus,
calculations based on them will follow the same principal of additive error terms in the
final forecast, as in Eq. (10).
Despite the ASDR for both sexes being correlated, the trend for females and the ratio

trends should be uncorrelated for Eq. (1) to be efficient. Hyndman et al. (2013) men-
tioned that the product and the ratio “will behave roughly independently of each other,
provided that the subpopulations have approximately equal variances” (Hyndman et al.
2013, p.263). We also found that female mortality trends and the ratio trends also behave
roughly independently.
Figure 12 suggests a weak or negative correlation between the females’ and ratio time

trend at most ages. The negative correlation generally comes from a decrease in the
females’ ASDR, but an increase in the SR. The SR time trend also tends to have a parabolic
shape, leading to a weak correlation with the exponential decrease of the females’ ASDR.
The RV coefficient is also weak for all countries, staying below 0.12. To assume that the
ratio trends and the female trends behave roughly independently is thus reasonable.

Fig. 12 Age-specific correlation coefficients for female death rates and ratio trends over time for 18 countries
and RV coefficient, 1960–2013
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Appendix D: Out-of-sample evaluation

Fig. 13 Mean absolute error (MAE) on forecasting the life expectancy at birth for a forecast horizon of 5, 10,
15, 20, and 25 years with the last year of the forecast period being 2013 with the CoDa, CoDaSC, and SR-CoDa
models, for Germany, the Netherlands, Portugal, and the United States, females and males

Appendix E: Forecasts

Fig. 14 Life expectancy at birth observed from 1960 to 2013 and forecast from 2014 to 2050 with the
CoDaCC model for females and with the SR-CoDaCC model for males, 18 countries
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