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Abstract

Background: The Lee—Carter method and its later variants are widely accepted
extrapolative methods for forecasting mortality and life expectancy in industrial
countries due to their simplicity and availability of high quality long time series data.

Objective: We compared and contrasted mortality forecasting models for higher
mortality regimes that lack long time series data of good quality, which is common in
several Central and Eastern European (CEE) countries.

Data and methods: We utilized seven different variants of the Lee—Carter method
and coherent mortality forecasts of various CEE countries, and the Bayesian Hierarchical
Model used by the United Nations to produce probabilistic forecasts. The data of nine
CEE countries with comparatively higher mortality have been considered.

Results: The performance of the forecasting models for the nine CEE countries was
found to be lower than that observed for low-mortality countries. No model gives
uniquely best performance for all the nine CEE countries. Most of the LC variants
produced lower forecasts of life expectancies than current life expectancy values for
Belarus, Russia, and Ukraine. A coherent mortality forecast could not overcome the
limitations of single population forecasting techniques due to increasing mortality
differences between these countries over the fitting period (mortality divergence). In
the same context, the use of the probabilistic forecasting technique from the Bayesian
framework resulted in a better forecast than some of the extrapolative methods but
also produced a wider prediction interval for several countries. The more detailed
analysis for Hungary indicates that a better fit of certain forecasting methods may occur
in the later part of the life span rather than the whole life span.

Conclusion: These findings imply the necessity of inventing a new forecasting
technique for high-mortality countries.

Keywords: Mortality forecast, Lee—Carter method, Coherent forecasting, Mortality in

Eastern Europe, Bayesian hierarchical model

Introduction

Improved mortality has been observed globally during the twentieth century and is
always considered a positive change for the socio-economic advancement of a coun-
try. This change has brought new requirements to support systems for the elderly, such
as improved health care and pension provision. Aging has become the greatest popu-
lation problem for many industrialized countries since the 1970s (Brouhns et al. 2002).
This has resulted in increasing interest among government policy makers and plan-
ners in accurately modeling and forecasting age-specific mortality rates. Policymakers
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rely greatly on the possibility of forecasting future population structures. Population
aging is increasing not only in low-mortality industrialized countries but also in sev-
eral Eastern European countries including Russia. These countries have a slower pace
of mortality improvement in several stages of the life span compared to low-mortality
countries, which delayed the aging problem (Gavrilova and Gavrilov 2009). This leads
to the necessity for research on mortality forecasting from the perspective of these
countries.

Several parametric and nonparametric methods have been proposed over the years in
order to forecast age-specific mortality rates and life expectancy. Booth and Tickle (2008)
reviewed all existing mortality forecasting methods under three broad classes in terms of
expectation, extrapolation, and explanation. The simplest way of parametric forecasting
is to parameterize the available series of life tables and extrapolate each of the parame-
ters separately to obtain the forecast using the assumed model (Keyfitz 1991). In addition
to all subjective approaches, a groundbreaking approach to probabilistic forecasting was
proposed by Lee and Carter (1992). The advantages of the Lee—Carter (LC) method are
its simplicity, as it has few parameters and a straightforward explanation, and robust-
ness in situations where age-specific log mortality rates have linear trends (Booth et al.
2002). To increase the precision of the LC method in the presence of an irregular mor-
tality schedule, later studies restricted the fitting period to post-war years, along with
other modifications (Lee and Miller 2001). More generally, Booth et al. (2002) noticed the
length of the fitting period might greatly affect point forecast accuracy. Later nonpara-
metric methods of mortality forecasting were introduced by Hyndman and Ullah (2007)
and were based on the LC framework. Nonparametric methods were found to be more
robust, as they are more efficient than other LC variants, even in presence of outliers,
and provide more accurate forecasts (Shang et al. 2011). Numerous other methods have
been proposed for mortality forecasting, although many are extensions of the basic LC
method. Renshaw and Haberman (2000) used a generalized linear model to model mortal-
ity reduction factors and identified the conditions under which the underlying structure
of the proposed model is identical to that of the LC method. A further extension by Ren-
shaw and Haberman (2003) accounts for the cohort effect. Other stochastic models have
also been introduced to integrate the cohort dimension in mortality, for example that by
Cairns et al. (2011). In addition to several LC variants, the application of the Bayesian
framework to the LC methodology has become popular. A few studies have proposed
extensions of the LC method using a Bayesian framework (see Wisniowski et al. 2015,
for example). Mortality forecasts might also be affected by a different distribution of
causes of death across countries (see Booth and Tickle 2008) and risk factors (see
Janssen et al. 2013, for an example on smoking status). De Beer (2012) introduced a
new relational model for both smoothing and projecting age-specific mortality rates.
Mortality forecasting based on the distribution of death has recently become more
popular. These approaches are gaining traction because they are independent of the
LC framework and are able to overcome some of the basic limitations of the LC
methodology (De Beer et al. 2017). Nevertheless, these approaches are newer, and LC
variants are the most applied techniques for mortality forecasting (Bohk-Ewald and Rau
2017).

All these methods predict the future mortality of a single population without
considering impact of neighbor countries (geopolitically, socio-economically, or by any
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other common criteria) which may significantly impact the mortality of that population
(Hyndman et al. 2013). The first approach to coherent mortality forecasting was intro-
duced by Li and Lee (2005) as an extended hierarchical interface of the LC method. Later,
Hyndman et al. (2013) extended the nonparametric approach of Hyndman and Ullah
(2007) for coherent forecasting; Ahmadi and Li (2014) used generalized linear modeling
and Bergeron-Boucher et al. (2017) used compositional data analysis on distribution of
death for coherent forecasting. In another approach, Janssen et al. (2013) considered the
smoking epidemic for coherent forecasting.

Given the existence of so many forecasting methods, it is particularly important to
assess which model is the most useful in specific contexts. Such an assessment has been
conducted by Shang et al. (2011), even though only a specific context was considered,
that is, industrialized countries characterized by low mortality, high life expectancies,
lower adult and early senescence mortality, a stable pattern of mortality transition over
time, and high data quality. Similarly, only low-mortality, industrialized countries have
typically been considered in coherent forecasting (see Seligman et al. 2016, for exam-
ple). Fewer attempts have been made to consider high-mortality Central and Eastern
European (CEE) countries or a large number of different mortality forecasting methods
(see Bohk and Rau 2015, for example). These countries were also mentioned before for
increasing mortality differences over time (the divergence of mortality regime), whereas
the developed countries in Western Europe have almost opposite scenario (Vallin and
Meslé 2001; Gavrilova and Gavrilov 2009). Even though the mortality pattern is still dif-
ferent from that of Western European countries (see Vallin and Meslé 2001), there are
also some similarities (Balint and Kovacs 2015), including increasing population aging
(see Gavrilova and Gavrilov 2009). Due to limitations of long time series data (with good
quality), it is possible that high-mortality regime forecasts will not be the same as those
obtained by Shang et al. (2011) or Shang (2012). This expectation is somewhat con-
firmed by Bohk and Rau (2015) who compared and contrasted forecasting techniques
to evaluate the impact of the recent financial crisis on some of the CEE countries and
stated that irregular mortality developments are particularly difficult to forecast due to
major changes in long-term trends. Therefore, the CEE countries would benefit from
an accurate mortality forecasting by comparing the outcomes of different forecasting
techniques.

The aim of this paper is to assess the performance of selected forecasting methods
for countries characterized by a higher mortality regime vis-a-vis Western countries.
We compared and contrasted the performance of the mortality forecasting models for
nine CEE countries—Belarus, Bulgaria, Estonia, Hungary, Latvia, Lithuania, Russia, Slo-
vakia, and Ukraine. The selected CEE countries differ from Western European and
other non-Eastern European countries in five ways: (a) higher mortality, (b) irregu-
lar mortality trends, (c) increasing mortality differences between countries over time
(the divergence of mortality regime), (d) shorter time series data, and (e) lower qual-
ity mortality data. Following Shang et al. (2011), we limited our main interest on LC
variants. As mentioned, LC variants are widely used because of their simplicity; many
European countries use LC variants for official forecasts (Stoeldraijer et al. 2013). Basic
LC method is the main one used for comparisons due to its widespread acceptability
(see Booth et al. 2012, Hyndman and Ullah 2007, Shang 2002, for example). Moreover,
we considered two more approaches for comparison—coherent mortality forecasting
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and life expectancy forecasting using a Bayesian Hierarchical model adapted by the
United Nations (UN). We extended this comparison to a coherent setup because on
contrary to the concept of coherent mortality forecasting, these countries have diverg-
ing mortality patterns compared to those of low-mortality countries (Li and Lee 2005).
Thus, this extension can provide more insight regarding the assessment of coherent
mortality forecasting. The UN adapted the probabilistic approach for forecasting life
expectancy using a Bayesian hierarchical model over the previously used deterministic
approach (Raftery et al. 2013). UN projections are widely accepted even for countries
with limited data, therefore, we extended our comparison to include this technique.
Overall, this sort of comparison of mortality forecasting for high-mortality countries
may help researchers to better understand the scope of developing mortality fore-
casting models and may help policymakers in terms of policy implications relating to
age- and cause-specific mortality. Unlike the study by Shang (2012), comparing and
contrasting on the abovementioned comparatively high mortality countries may give
us better insight regarding the impact of recent mortality improvements on future
mortality.

This paper consists of four parts. In the next section, we review the forecasting models
used in this study and the source of data. The “Results” section consists of two subsec-
tions: in the first one, we compared the findings of the models for selected countries with
high-mortality regimes, while in the second one, we discuss the country-specific results
for Hungary to gain more insight regarding the fitted models. The last section consists of
the concluding remarks.

Data and methodology

Data

The data used in this study came from the Human Mortality Database (HMD 2018).
Data from nine CEE countries are utilized. Central and Eastern Europe (including Rus-
sia) has higher mortality compared to Western Europe. These countries were mentioned
before for increasing mortality differences between countries over time (the divergence
of mortality regime), whereas the developed countries in Western Europe have converg-
ing trends (Vallin and Meslé 2001). Some of these former Socialist countries have some
similarities in terms of social inequalities (Mackenbach 2013). We excluded Poland and
Slovenia from this analysis as their mortality patterns are more similar to those in West-
ern European countries. The data we used for different countries and their last observed
life expectancies at birth are given in Table 1. For most of these countries, the life table
started from 1950; only Bulgaria has available data from 1947. However, we did not utilize
all the available data for several of these countries due to the lower quality of the data, as
mentioned by the HMD (HMD 2018).

For the Bayesian probabilistic model (UN forecast), the life expectancy at birth data
are taken from the HMD on a 5-year basis rather than complete life tables used for the
extrapolative models. We also contrast this method using the data of World Population
Prospects 2012 (UN 2013).

Mortality projection models
The models used in this study are briefly reviewed in the following subsections. We used
seven different variants of the LC method along with a coherent mortality forecasting
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Table 1 Fitting periods for the countries and life expectancy at birth (HMD 2018)

Country Starting year End year eg (female) eo (male)
Belarus 1970 2014 7843 67.81
Bulgaria 1950 2010 77.25 70.31
Estonia 1959 2013 8133 72.72
Hungary 1960 2014 79.24 7226
Latvia 1970 2013 78.73 69.26
Lithuania 1959 2013 79.37 68.52
Russia 1970 2014 7648 65.26
Slovakia 1962 2014 80.32 73.25
Ukraine 1970 2013 76.21 66.31

method and the Bayesian hierarchical model used by the UN to produce probabilistic
forecasts. We considered four parametric LC variants those by Lee and Carter (1992), Lee
and Miller (2001), Booth et al. (2002), and Brouhns et al. (2002), and three nonparametric
variants of the Hyndman—-Ullah method, robust Hyndman-Ullah method, and weighted
Hyndman-Ullah method (Hyndman and Ullah 2007).

Lee-Carter method (1992) and variants

Since its development, the LC method has been one of the most applicable methods. Use
of principal components for mortality forecasting came to practice through the work of
Lee and Carter (1992). The two-factor LC model is given below:

ln Vl’lx,t = ady + bxkt + Gx,t. (1)

Here, my; is the central mortality rate at age x for year ¢, a, represents the average
log mortality at age x over time, by is the first principal component capturing relative
change in the log mortality rate at each age x, k; represents the overall level of mortality
in year ¢, and ey is the model residual. Singular value decomposition (SVD) is applied to
Zyt =ln(m,) — ay] to obtain the ordinary least squares (OLS) estimate of the LC model.
SVD decomposes the Z into the product of three matrices. Symbolically,

SVD(Zyy) = ULV' = LiUy Vi, + ... LUy, V.

To estimate of the age and time components, Lee and Carter (1992) considered the
rank-1 approximation only because it explains most of the variance. The estimates of the

model parameters are:
k; = L1V, and by = U,.

The LC method makes a second stage estimate of k; by finding the value of k¢, which for
a given population age distribution and previously estimated a, and b, produces exactly
the observed number of total deaths for the fitting period of the model (Lee and Carter
1992). An ARIMA(0,1,0) with drift is then fitted for adjusted /Aq and used to forecast
future mortality. Later, Lee and Miller (2001) proposed three modifications of the basic
LC model: (i) the fitting period is restricted from 1950 and onward to reduce structural
shifts, (ii) the adjustment of k; is done by matching life expectancy, and (iii) the “jump-off
error” is eliminated by forecasting forward from observed (rather than fitted) rates.

The LC model can be extended by including higher-order terms instead of the rank-1
approximation considered in the earlier two approaches. Higher-order terms were mod-
eled by Booth et al. (2002), and forecasts were later developed using univariate ARIMA
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processes (Renshaw and Haberman 2003). The key modifications of this method are
(i) the fitting period is determined by a statistical “goodness of fit” criterion, under the
assumption that k; is linear; and (ii) the adjustment of k; involves fitting to the age dis-
tribution of deaths rather than to the total number of deaths in the basic LC model. This
model is a significant development in the research of forecasting mortality, as it slightly
eliminates a shortcoming of the LC model. The LC model assumes invariant by, whereas
evidence of substantial age—time interaction is common (Shang 2012).

Brouhns et al. (2002) considered the underlying deaths are distributed in a Poisson
regression and assumed them to have the following log-bilinear form of the mortality
rates.

D, ~ Poisson {Ex,tmx,t} with m,; = exp(ay + byky);

where E,; represent the population exposed to death at age x in time ¢. The constraints of
the basic LC model also holds for this method. One of the main advantages of using this
approach is that it allows the maximum likelihood estimation of the model parameters
instead of OLS or a Gauss—Newton algorithm (Brouhns et al. 2002). This shows some
further development in scope to utilize the Bayesian approach for LC methods. In this
paper, our analysis was based on the classical approach instead of the Bayesian framework.

Nonparametric approaches: the Hyndman and Ullah (2007) methods

To address the problem of lack of across-age smoothness, heterogeneity of deaths over a
long time period (Girosi and King 2006) and the consideration of only the first principal
component in LC variants, Hyndman and Ullah (2007) proposed a functional data model
that utilizes second- and higher-order principal components to capture additional vari-
ation in mortality rates. This technique uses a penalized regression spline with a partial
monotonic constraint to smooth the log mortality rates first. The following continuous
smooth function f;(x) is assumed for discrete ages.

me(x;) = fe (%) +or(x)er; i=1,...,p; t=1,...,m (2)

where m;(x;) represents log-transformed mortality rates for each age x; in time ¢, oy (x;)
is the noise component and ¢;; is an i.i.d. standard normal variable. Hyndman and Ullah
(2007) proposed to use weighted penalized regression splines to estimate f;(x). This
weighting controls heterogeneity due to o;(x), and a monotonic constraint for upper
ages can lead to better estimates. In this study, we applied equal weights to the approx-
imate inverse variances w,; = m,E,; and used weighted penalized regression splines
to estimate the curve f;(x) for each year (Hyndman and Ullah 2007). Weighted penalized
regression splines are preferable in terms of computational time and allow monotonicity
constraints (Hyndman and Ullah 2007). Details of the estimation procedure for interval
forecasts are given elsewhere (Hyndman and Ullah 2007). Functional principal compo-
nent analysis utilizes a set of continuous functions and is decomposed into functional
principal components and their associated scores, symbolically

J
fi®) =a@) + Y bi@ky+e); t=1,...,m
j=1

where a(x) is the mean function (= % St (x)), bj(x) is the set of first / functional prin-
cipal components, kg is the set of uncorrelated principal component scores, and e;(x) is
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the residual function. It should be noted that J < # is considered for optimal number of
functional principal components. The ARIMA model is suggested to forecast principal
component scores, as they have minimum AIC (Akaike information criterion) of the fit-
ted model; however, almost every suitable time series can be applied (Shang 2012). Two
more versions of the HU method were also proposed for special situations. The first one
is generally refereed to as the robust Hyndman and Ullah method (HUR), proposed to
forecast in presence of outliers. This approach investigates the integrated squared error
for each year by calculating following measures of accuracy for the functional principal
component approximation of the functional data.
% / ’
/ fi) —alx) = Y _ bk | dx. 3)
x—1 j=1
After assigning zero weight to outliers, the HUR fits the mortality rates from which
forecasts of age-specific life expectancies can be estimated without the effect of prospec-
tive outliers. Hyndman and Ullah (2007) proposed another weighted version of HU where
recent years get more weight during model fitting than years from the distant past. The
new method can be showed symbolically as follows:

]
filx) =@ @) + Y bf ks + er(); )
j=1
where, a*(x) is the weighted functional mean, such as:

n

n
a'(x) = Zwift(x), wa =1, where, w; =«(1 — k)" % t=1,...,n

t=1 t=1
This w; is the new weight defined by Hyndman and Ullah (2007) for 0 <
k < 1, a geometrically decaying weight parameter. The optimal value of « is cho-
sen by minimizing an overall forecast error measure within the validation data set
among a set of possible candidates. Details of the methods can be found elsewhere

(Hyndman and Shang 2009).

Coherent mortality forecasting

In recent years, coherent or multi-population forecasting methods have become more
popular because these approaches try to capture the effects of global improvements in
health, communication, and science on a specific population. The standard (Lee and
Carter 1992) model and its variants are designed for forecasting for single populations
and are often used for females and males independently. Li and Lee (2005) modified the
standard LC model to forecast mortality for countries by taking into account their mem-
bership in a group, rather than forecasting individually. To do that, Li and Lee (2005) first
identified the central tendencies within a group, addressing as common factor and hence
adopted the historical particularities of each country as their due weight in projecting
individual country trends for forecasting mortality. Thus, in the short term, inter-country
mortality differences in trends may be preserved, but ultimately age-specific death rates
within the group of countries are constrained to maintain a constant ratio to one another
(Li and Lee 2005). This extended model can be formulated as:

Inmyys; = axi + BeKs + byiksi + €xt,is (5)
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where i stands for a specific country in the group, and a,; is the country-specific average
log mortality rate. The terms By and K; are relative speed of change in mortality at each
age x and a mortality index capturing the main time trend for the reference population,
respectively. Li and Lee (2005) mentioned the term B,K; as a common factor because
this quantity is common for all the countries of the group. The error term of Eq. (5) is
the country-specific estimate of the error. To obtain the country-specific estimates of
the Li—Lee model, first the Lee and Miller (2001) model is fitted to a reference popula-
tion. The reference group is constructed by adding all the populations of the group from
which the common factor is extracted to use in the country-level mortality forecasting
mentioned in Eq. (5). Both for K; and k;;, random walk with drift is used for forecasting
in the current study. Following Lee and Miller (2001), actual data is used for mortality
forecasting (rather than fitted data) to avoid jump-off error. Choosing a reference pop-
ulation remains one of the biggest problem in coherent forecasting. Several approaches
have tried different strategies for using particular countries as reference populations con-
sidering geographic and economic similarities, and other criteria (Kjeergaard et al. 2016).
In the current study, we combined all populations together as a reference group for each
of these countries. Li and Lee (2005) also considered a group of low-mortality countries
as a reference for making coherent forecasts for high-mortality countries with the opti-
mistic assumption that these countries will catch-up with the low-mortality countries in
future.

Besides these abovementioned variants of LC and HU method, there are other
approaches for mortality forecasting. Most of these techniques are largely based on the
original LC method. For example, Tuljaparker et al. (2000) used the LC model without any
adjustment of the time component and started model fitting from 1950; Girosi and King
(2006) considered more than one component in the LC model, and later in another study,
they extended the model to incorporate age—period—cohort effects. Using the parame-
ter estimation technique of Brouhns et al. (2002), several approaches have been proposed
on Bayesian framework. For the sake of simplicity and wide applicability, we restrict our
comparison to major variants of the LC and HU methods only.

Bayesian probabilistic projections (UN life expectancy forecast)

Several mortality forecasting techniques using the Bayesian framework have been pro-
posed to overcome invariant mortality improvements in LC variants (e.g., Bohk-Ewald
and Rau 2017; Cairns et al. 2011; Wisniowski et al. 2015). In addition to this method-
ological problem, one of the major shortcomings of all the abovementioned variants
of the LC model is that these methods require age-specific death rates for at least
three decades to fit the model, certainly not the case for many developing countries
(Raftery et al. 2013). Instead of forecasting mortality rates in Bayesian framework,
(Raftery et al. 2013) proposed an alternative approach to forecast life expectancy at birth
using the Bayesian framework. They applied a Bayesian hierarchical model to forecast
period life expectancy directly using a random walk model with a non-constant drift. The
newly defined drift term is a nonlinear function of current life expectancy and reflects
the fact that life expectancy tends to change more slowly for the countries with the lowest
and highest life expectancies and more quickly for the countries in the middle. The UN
produces estimates of age-specific mortality and period life expectancy at birth for all
member countries and updates in every 2 years in the UN World Population Prospects
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(UN 2013). The UN projects life expectancy in the next time period deterministically
using the equation:

Lepr1 = Lep +g(Ley). (6)

Forecasting life expectancy is done using a double logistic function of the current level
of life expectancy, symbolically represented as:

kC
1+ exp (—/A‘—l5 (€t — AS — AZA;))
z¢ — k¢
1+ exp (—i—i (Za — Z?:l Af —AzAfL))

AS, A5, A§, AG, k¢, and z€ are the six parameters of the double logistic function for coun-

g (Zc,twc) =

+

7)

try c at time ¢. The estimation technique has changed since World Population Prospects
2012 (UN 2013), as the UN Population Division used a probabilistic model for the first
time to forecast life expectancy at birth using the methods of Raftery et al. (2013). They
utilized the following hierarchical model to turn the old deterministic model into a prob-
abilistic one (with uncertainty) and hence adopted a Bayesian approach to estimate the
model parameters. Therefore, the hierarchical model become:

Corr = bos + (€al0®) + e ®)

Raftery et al. (2013) defined proper prior for all 13 parameters of the model in such a
way that the prior distributions are more diffuse than the posterior distributions. Thus,
the abovementioned hierarchical model turned into a Bayesian hierarchical model. This
method has one advantage over any other parametric or nonparametric methods; it is
flexible for choosing the prior to obtain fast, slow, or medium pace of change in level
of life expectancy, per the usual UN projection. The UN method has been proposed to
forecast life expectancy using data of World Population Prospects or similar sources. As
a consequence, one of the major disadvantages of this method is that it does not forecast
considering whole life tables like the previous methods. This makes it complicated to
compare the outcomes with those of LC variants. This method takes a single value for
life expectancy for each of the 5 years and also returns the forecast as a single value for a
period of 5 years (as a median life expectancy for 5 years) utilizing a Bayesian hierarchical
model. We considered this method for comparison to evaluate whether LC variants are
more optimistic than those used in forecasting only life expectancy at birth. None of the
previous approaches compared their findings with UN projections.

Assessing the performance of the mortality forecasting techniques

We assess the performance of the mortality forecasting techniques in general for all the
countries using three classes of forecasting techniques: LC and HU variants, coherent
forecasts, and UN projections. As coherent forecasting and UN projections are different
than LC and HU variants in terms of interpretation and implications, we assess them in
different subsections of the “Results” section. The problem of the shortened fitting peri-
ods is illustrated in the subsection on coherent forecasting. We fitted the models for 18
series of life tables for males and females separately. The analysis performed in this study
are implemented by “Demography” package of R for all of the LC and HU variants. For
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Bayesian forecast, we used the “bayesLife” package in R. For illustration, we presented
the results for females only. To evaluate a forecast technique, we considered two cri-
teria—how optimistic the forecast is in the long run and the accuracy level during the
out-of-sample evaluation period (except for the UN method). For high-mortality coun-
tries with a jagged pattern of mortality improvement over the years, it is possible that the
forecast could be lower than the last observed life expectancy (Booth et al. 2002). We con-
sidered it a failure of the model to capture the mortality trend for that particular country
because a forecast showing future decline in the mortality pattern is contrary to the basic
assumption of the models regarding future mortality improvement (Lee and Miller 2001).
Moreover, lower estimates of life expectancy may occur due to a seasonal jump of life
expectancy during the out-of-sample evaluation period or in the short run, which is not
the case for the long forecast horizon (Shang 2012). Although we have included the UN
forecast technique to compare with our findings, we still limit the main topic of discussion
to the LC and HU variants.

To estimate the forecast accuracy, we used the mean absolute forecast error (MAE) and
mean squared forecast error (MSE), symbolically represented as:

q p
MAE (p + 1)6] Z Z |yx,i -

j=1 x=0

r

1
MSE = —— Vi — P,
(p + l)q j:lezo % xjli—h

Here, y, j represents the observed mortality rate for age x in year j, and y,; represents the
forecast. Unlike Shang et al. (2011) or Shang (2012), we choose the mean squared forecast
error over the mean forecast error as a measure of forecast accuracy. Most of the time,
the mean forecast error can be misleading because it may conceal forecast inaccuracy due
to the offsetting effect of large positive and negative forecast errors or very low error in
forecasting (actual). We used available mortality data from the last 10 years for the out-
of-sample evaluation of the forecasting technique. Using the data in the fitting period, we
made the one-step-ahead and ten-step-ahead point forecasts and determined the fore-
cast accuracy by comparing the forecasts with the holdout data in the out-of-sample
evaluation period.

Due to a shorter fitting period for most of these countries, we kept the forecast horizon
for 40 years only; this is the approximate available length of the fitting period for all of
these countries. For high-mortality countries, this ground also seemed safe to us like the
previous studies conducted on low-mortality countries (e.g., Janssen et al. 2013). Here,
LC stands for the basic (Lee and Carter 1992); LCp stands for the model with a Poisson
regression (Brouhns et al. 2002); LM stands for the modified LC model proposed by Lee
and Miller (2001); BMS stands for the modified LC model proposed by Booth et al. (2002);
HU stands for the nonparametric approach proposed by Hyndman and Ullah (2007);
HUR stands for the robust (Hyndman and Ullah 2007); HUy stands for the weighted
(Hyndman and Ullah 2007); LL stands for the coherent mortality forecast proposed by
Li and Lee (2005); and UN stands for the UN life expectancy forecast using a Bayesian
hierarchical model (Raftery et al. 2013). These notations are used throughout the paper.
Except for the coherent forecasting, the fitting periods are the same for the rest of the
models (see Table 1). To keep the comparison of models in same the time frame as the Lee
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and Miller (2001), we started the fitting from 1950. For coherent forecasting, we used the
common fitting period of 1970 to 2010 for all the countries. We used the life tables con-
structed up to age 100 for model fitting and forecasting due to the lack of data for most of
the countries at later age groups.

Results

Comparison of mortality projection models for the nine selected CEE countries

Forty years ahead point forecasts of life expectancy at birth obtained using all the methods
are given in Table 2. In Table 2, forecast of life expectancy is presented only for the models
for which the 40 years ahead forecast is higher than the last observed life expectancy. The
results of the different types of models are discussed later.

LC and HU variants

BMS produced the most optimistic forecast of life expectancy for three Baltic countries
and Slovakia. HUR produced the highest forecast for the Ukraine; the UN forecast was the
highest for Russia, and for rest of the countries, HUy produced the most optimistic point
forecast of life expectancy. In addition to other exceptional cases, all the models produced
lower forecasts than the last observed life expectancy for Belarus, Russia, and Ukraine, the
countries with the highest mortality levels. Only HUy could produce a higher forecast
of life expectancy than the last observed ey for Belarus; all other methods extrapolated
lower or almost equal future life expectancy. For Russia and Ukraine, the HUr method
was appropriate in this sense (for Ukraine, HUy was also appropriate). The results of HU
variants show a better fit. This is attributable to smoothing and the implications of more
than one principal component to explain the higher variation (Hyndman and Ullah 2007).
HUR is proposed to give a better fit and optimistic forecast in the presence of outliers
during fitting period, which is very common for all these countries. For illustration, the
observed female mortality rates for Russia and Ukraine are given in Fig. 1 for the fitting
period.

Although HUw produced an optimistic forecast for Belarus and Ukraine, still the results
are the subject to analyze. HUyy is employed for countries with long time series data,
which was not the case for these countries. Similarly, despite providing more optimistic
forecasts and greater forecast accuracy than the other methods, forecasts using HUR are
affected by unusual improvements in age-specific mortality patterns more than forecasts

Table 2 Comparison of 40 years ahead life expectancy forecast for selected countries with high

mortality

Country ey LC LCp LM BMS HU HUR HUw LL UN
Belarus 7843 - - 7843 - - - 80.79 - 79.95
Bulgaria 77.25 82.16 79.77 80.24 79.76 7849 80.83 82.61 77.55 80.63
Estonia 81.33 85.98 85.99 86.19 91.00 84.19 82.74 84.95 84.71 85.70
Hungary 79.24 83.16 83.05 83.68 85.98 84.64 8299 87.81 82.60 83.54
Latvia 78.73 81.87 81.76 81.92 86.37 81.30 81.76 82.31 80.10 8243
Lithuania 79.37 82.31 81.05 81.93 85.20 80.37 80.09 82.70 81.63 82.76
Russia 7648 - - - - - 77.82 - - 79.08
Slovakia 80.32 84.91 84.65 84.66 86.24 83.93 83.64 84.17 82.37 84.44
Ukraine 76.21 - - - - - 80.19 78.64 - 79.24

Results are shown for females only.
ep is the last observed life expectancy during the fitting period from HMD (Table 1).
A blank place means the forecast of ey was lower than the last observed value of ep.
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Fig. 1 Observed mortality rates of Russia (1970-2014) and Ukraine (1970-2013). Years are plotted using a
rainbow palette so the earlier years are shown in red, followed by orange, yellow, green, blue, and indigo
with the most recent years plotted in violet

using the other two HU variants (see the country-specific example of Hungary for more
details). It should be noted that although we tried to utilize all available data from the
HMD, it was not possible for all these countries. Due to caution notes from the HMD,
we started the fitting period only from the best available years mentioned in the HMD
(Table 1), making data quality a restriction for the application of the models. BMS also has
some flaws regardless of providing the optimistic forecast for the Baltic counties. BMS
considers only the best fitting period instead of taking into account all the observed data.
For all nine countries, the data of the last 20 years was found to be more significant for
forecasting during model fitting.

To determine the forecast accuracy of the methods (except for the UN forecast), we ana-
lyzed the MAE and the MSE during the out-of-sample evaluation period. One-step-ahead
MAE and MSE for the LC and HU variants are given in Tables 3 and 4, respectively. As
mentioned previously, the models failing to forecast eg higher than the last observed ey of

Table 3 One-step-ahead forecast bias of the fitted models in terms of MAE

Country LC LCp LM BMS HU HUR HUw LL
Belarus - - 0.144 - - - 0.102 -
Bulgaria 0.160 0.144 0.128 0.122 0.137 0.131 0.110 0.131
Estonia 0.248 0.246 0322 0.259 0.324 0.292 0.273 0.267
Hungary 0.181 0.164 0.146 0.132 0.119 0.118 0.115 0.157
Latvia 0.186 0.185 0.204 0.186 0.174 0.196 0.175 0.146
Lithuania 0.330 0.167 0.209 0.187 0.167 0.177 0.168 0.210
Russia - - - - - 0.079 - -
Slovakia 0.181 0177 0.257 0.186 0.200 0.212 0.195 0.214
Ukraine - - - - - 0.087 0.066 -

A blank place means the forecast of eg was lower than the last observed value of eg.
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Table 4 One-step-ahead forecast bias of the fitted models in terms of MSE

Country LC LCp LM BMS HU HUR HUw LL
Belarus - - 0.079 - - - 0.033 -
Bulgaria 0.044 0.037 0.033 0.038 0.047 0.045 0.034 0.034
Estonia 0.141 0.137 0.283 0.151 0214 0.204 0.176 0.167
Hungary 0.065 0.057 0.049 0.052 0.048 0.047 0.042 0.057
Latvia 0.110 0.110 0.140 0.109 0.115 0.134 0.107 0.051
Lithuania 0.262 0.079 0.128 0.096 0.074 0.086 0.079 0.127
Russia - - - - - 0.010 - -
Slovakia 0.112 0111 0.1967 0.130 0.169 0.163 0.162 0.109
Ukraine - - - - - 0.015 0.008 -

A blank place means the forecast of ey was lower than the last observed value of eg.

corresponding fitting periods (Table 2) are omitted. In terms of MAE and MSE, the lowest
errors were found for HUyy. For high-mortality contexts, the lowest MAE and MSE were
not always obtained using the identical method for a country. Except for HU variants, all
other models overestimated the mortality rates and produced lower life expectancy as a
consequence. The other LC variants slightly underestimated the mortality rates during
the fitting period. The basic LC method returned a high MAE for Estonia and Lithuania.
Some values of MSE indicate overfitting of corresponding models. Forecast accuracies
were close for the basic LC variants, except for BMS. Contrary to the optimistic forecast
obtained for all three Baltic countries and Slovakia, BMS was not the best forecast tech-
nique in term of MAE. The different results of the LC variants imply the influence of
different adjusting techniques for the time component of the model. We employed the LC
method without any adjustment for the time component, and the results were different
than those of the existing LC variants. Nevertheless, in terms of forecast accuracy or an
optimistic forecast, it was not possible to declare a particular model unquestionably and
uniquely best for all of these countries. For the developed countries, almost the same sit-
uations were observed, prompting the conclusion that no model performed uniquely well
for all countries (Shang et al. 2011; Shang 2012).

Coherent forecasting

Our study is unique compared to previous comparisons because we considered coherent
mortality forecasting for high-mortality countries as well. Moreover, the reference popu-
lation of the coherent forecast was completely comprised of countries with high-mortality
regime compared to previous studies with mixture of countries from low mortality
regimes (Li and Lee 2005). We fitted the model from 1970 to 2010 for coherent forecast-
ing due to data problems in earlier years and ended with Bulgarian mortality data for
2010. Therefore, the 40 years ahead forecasts give us future life expectancy in 2050. The
coherent mortality forecast could not produce more optimistic results than the LC and
HU variants for any of the countries. However, it was the most accurate method for Latvia
in terms of MAE and MSE and for Slovakia in terms of MSE. The scope of coherent mor-
tality forecasting for these comparatively high-mortality countries became restricted due
to the lack of long time series data. The results of coherent mortality forecasting for the-
ses countries are shown in Table 2. LL produced the most pessimistic forecast among all
methods for Bulgaria, Hungary, Latvia, and Slovakia. For the sake of comparability, the
same fitting period (1970-2010) is used for different LC and HU variants, the results are
shown in Table 5.
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Table 5 Comparison of 40 years ahead life expectancy forecast for selected countries with
high-mortality for the harmonized fitting period (1970-2010)

Country e LC LCp LM BMS HU HUg HUw LL
Belarus 7649 - - - - - - 7858 -
Bulgaria 77.25 79.92 80.09 79.95 80.09 - 79.17 7743 77.55
Estonia 80.55 8473 84.66 84.82 88.23 - - 80.57 84.71
Hungary 78.34 82.30 8242 82.78 84.79 85.71 86.42 86.44 82.60
Latvia 77.39 80.28 79.60 79.70 79.75 78.62 - 79.83 80.10
Lithuania 78.73 80.96 79.76 80.52 79.66 7941 78.96 8145 81.63
Russia 74.86 - - - - - - 74.89 -
Slovakia 79.15 83.50 8345 83.49 84.67 82.69 8267 8345 8237
Ukraine 75.19 - - - - - - 7890 -

Results are shown for females only.
eo is life expectancy at birth of 2010 from the HMD.
A blank place means 40-years-ahead forecasts of ey was lower than the eg of 2010.

The performance of the coherent mortality forecast was greatly affected for three
reasons: (i) combination of mortality rates of a population with large exposure to mor-
tality rates of a population with comparatively smaller exposure size, (ii) high adult
male mortality for several of these countries, and (iii) irregular trend of life expectancy
of joint mortality data because of (i) and (ii). Although LL performed reasonably for
most of these high-mortality countries, it failed to do so for Belarus, Russia, and
Ukraine. During estimation of the common factor, countries with high mortality dom-
inated the comparatively low-mortality countries. This might be due to mixing large
exposure with smaller exposure or combining mortality rates of populations with differ-
ent age- and cause-specific mortality patterns. Because country-level mortality has two
parts—common factor from the reference population and country-specific estimate of
by ik i—the country-specific forecast is affected because the common factor of the ref-
erence population greatly affects completely different mortality patterns. This is another
consequence of using coherent forecasting for population groups with increasing mor-
tality differences over time (mortality divergence). LL adjusts the time component of
the common factor according to the estimated life expectancy of combined mortal-
ity data. The estimated life expectancy for our high mortality countries has irregular
trend that is different than the country-specific individual trends of life expectancy in
most of the cases. Characteristics of the combined mortality rates of these countries
and the key outcomes of the fitted model using joint mortality rates are given in the
Appendix.

Our coherent forecasting results also indicates necessity of implying a rigid assumption
for choosing a similar group of countries (Kjeergaard et al. 2016). The six countries for
which the coherent mortality forecast of life expectancies is higher than the last observed
life expectancies are all currently member states of the European Union. In the current
methodology of coherent forecasting, the fitting period of combined mortality data might
be shorter for individual countries with longer time series data; this may affect the forecast
as well.

We re-discovered the problem of a shorter fitting period for all LC and HU variants
during our analysis of the forecast with a harmonized, shortened fitting period. In addi-
tion to the coherent mortality forecasting, previous methods also suffered for shortened
fitting periods. When using the harmonized fitting period for Bulgaria and Estonia, the
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HU model failed to produce a higher forecast than the last observed life expectancy,
HUR failed to do so for Estonia, Latvia, and Russia. It was mentioned in earlier studies
that long time series is preferable for the fitting of these models, however, that condition
could not be held for many of these countries due to data problems (Booth et al. 2002).
As the HMD mentioned, there was lower data quality for some of the years for a few of
these countries due to the data source; we tried to fit the models by both including and
excluding those years. The forecasts obtained by considering those years during the fitting
period were misleading. However, we could not fit the models for Estonia and Lithuania
by excluding the problematic years, as they are almost in the middle of the fitting period
for Estonia, and exclusion could make the fitting period too short for the forecasts in the
case of Lithuania. In several cases, particular models failed to produce higher estimates
of life expectancies than the last observed one; estimates obtained considering all avail-
able data for model fitting differed. A comparison of one-step-ahead MAE and MSE for
the LC and HU variants and LL are given in Tables 6 and 7 for the harmonized fitting
period.

UN forecasting

Unlike most of the previous comparisons, we extend the comparison of the mor-
tality forecasting models with probabilistic forecasting obtained through a Bayesian
framework (UN forecast). It should be noted that the UN life expectancy forecasts
shown in Table 2 refer to years 2050-2055, as this technique uses 5 years age groups.
For the nine countries considered in this study, we utilized the life expectancy at
birth in 5-year intervals from the HMD instead of using the UN data. We project
the life expectancy at birth up to year 2100, to compare with the LC and HU vari-
ants, the results are shown up to 40 years. In addition to the data from HMD, we
also used the data from the World Population Prospects (UN 2013); the comparison
between these two different data sources is given in the Appendix. The simulation
was done with 160,000 iterations (10,000 burn-in); the thinning interval was 10, and
the number of chains was three. It was already mentioned in the previous section
that an irregular trend in mortality is visible in the case of several of these coun-
tries. The trend of life expectancies computed on a 5-year basis was also similar to
that; fluctuations in the trend for life expectancies remained for Belarus, Russia, and
Ukraine during the fitting period. Like HMD, a similar pattern was also observed in

Table 6 One-step-ahead forecast bias of the fitted models in terms of MAE considering harmonized
fitting period

Country LC LCp LM BMS HU HUR HUw LL
Belarus - - - - - - 0.113 -
Bulgaria 0.120 0.119 0.120 0.118 - 0.119 0.151 0.131
Estonia 0.348 0.289 0.327 0.293 - - 0.235 0.267
Hungary 0.130 0.182 0.184 0.148 0.139 0.172 0.115 0.157
Latvia 0337 0.185 0.139 0.138 0.114 0.121 0.112 0.146
Lithuania 0.287 0.209 0.395 0.207 0.208 0.209 0.190 0.210
Russia - - - - - - 0.046 -
Slovakia 0.142 0.142 0.142 0.153 0.163 0.156 0.149 0214
Ukraine - - - - - - 0.061 -

A blank place means the corresponding 40-years-ahead forecast of ey was lower than the ey of 2010.
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Table 7 One-step-ahead forecast bias of the fitted models in terms of MSE considering harmonized
fitting period

Country LC LCp LM BMS HU HUg HUw LL
Belarus - - - - - - 0.037 -
Bulgaria 0.039 0.039 0.039 0.038 - 0.039 0.062 0.034
Estonia 0.320 0.197 0.283 0.194 - - 0.122 0.167
Hungary 0.067 0.063 0.072 0.056 0.046 0.059 0.040 0.057
Latvia 0.075 0.040 0.044 0.042 0.031 0.033 0.028 0.051
Lithuania 0.227 0.119 0.307 0114 0.141 0.136 0.124 0.127
Russia - - - - - - 0.003 -
Slovakia 0.041 0.040 0.042 0.049 0.062 0.060 0.059 0.109
Ukraine - - - - - - 0.007 -

A blank place means the corresponding 40-years-ahead forecast of eg was lower than the ey of 2010.

case of data from World Population Prospects. Nevertheless, UN forecasts showed an
increasing trend for life expectancy at birth for all these countries (both for HMD
and World Population Prospects). Unlike several LC variants and coherent forecast-
ing, the forecast of life expectancies was higher than the last observed one for all
three high-mortality countries—Belarus, Russia, and Ukraine. For all other countries,
the forecast produced using the UN forecast technique fell between the other fore-
cast methods. The UN forecast was lowest for Hungary and Latvia among all the
methods.

One shortcoming of the UN forecasting technique is that it is not based on life table
like the previous LC or HU variants. This prevents age-specific mortality forecasting and
comparing forecast accuracy in out-of-sample evaluation period, as we have done for the
LC and HU variants or for the coherent forecasting. Instead, we plotted the 95% pre-
diction interval to forecast life expectancy at birth for all nine countries (see Appendix).
These prediction intervals are showed here over the whole projection period (up to year
2100). Belarus, Russia, and Ukraine have wider prediction intervals compared to the
other countries. The diverging mortality pattern affects the forecast of life expectancy as
well.

Country-specific illustration: Hungary
Past mortality trends
We assessed all the models in the previous section without focusing on a spe-
cific country to get an overall view of mortality forecasting in a high-mortality
context. To illustrate the performance of different mortality forecasting models in
a more detailed way, Hungary is considered in this section as a representative of
these countries. Hungary is chosen because it has a high-mortality regime similar
to many other countries in Eastern Europe. The common features of the mortality
scenario of these countries can be characterized by the presence of a high level of
mortality from cardiovascular diseases and several external causes of deaths (Balint
and Kovics 2015). The trend of life expectancy at birth of Hungary is plotted in
Fig. 2.

In the beginning of the 1990s, life expectancy of the Hungarian population was among
the lowest in Europe. The recent gains in longevity are related to specific causes of
death. Decomposition of life expectancy at birth showed that the 7-year gain in male life
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Fig. 2 Observed life expectancy at birth of Hungary (1960-2014)

expectancy between 1990 and 2013 was mainly attributable to a decline in cardiovascu-
lar mortality, which corresponds to 40% of the total gain in longevity (Bélint and Kovécs
2015). The decline in mortality due to external causes of deaths has resulted in an increase
in life expectancy of 1.7 years. The log mortality rates for Hungarian males and females
from the HMD are plotted in Fig. 3. The irregular patterns in mortality are visible in the
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Fig. 3 Observed log mortality rates of Hungary (1960-2014). Years are plotted using a rainbow palette as Fig. 1
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young and senescence age groups. A gender gap is also visible in different age groups
during the fitting period.

Forecast of life expectancies

To compare the different methods more precisely in a high-mortality context, we
compared the forecasts for all the LC and HU variants and coherent forecasting
for males and females separately for Hungary. The results are given in Table 8.
We extrapolated the results for 20, 30, and 40 years ahead (24, 34, 44 vyears for
LL) to see any possible convergence of the forecasts using different methods. Life
expectancy at birth was 72.26 and 79.24 years respectively for males and females in
2014, while for coherent forecasting, it was 70.59 and 78.34 years, respectively, in
2010. Except for LC, LCp, and BMS, all the models produced a higher forecast of
life expectancy than the last observed ey of Hungarian males. For females, all the
models produced an optimistic forecast. We also forecast remaining life expectancy
at age 65 to see the performance of the life expectancy forecasting in later ages
and extrapolated for 20, 30, and 40 years ahead (Table 9). Remaining life expectancy
at age 65 was 14.56 years and 18.40 years, respectively, for males and female in
2014, while it was 13.94 years and 17.88 years, respectively, in 2010 (for coherent
forecasting).

Although LC and BMS failed to produce optimistic forecasts of life expectancies at
birth, the forecast of eg5 was higher than the last observed egs for both methods; which
was not the case for LCp. In the other cases, all the models performed well, although
higher forecasts are observed from HUyy for females compared to the other methods.
Moderate improvements in the mortality of people aged 65 years or over were observed
in previous studies as well, unlike the pattern observed for the middle-aged population
(Balint and Kovécs 2015).

Forecast of mortality rates

Besides optimistic forecast of life expectancies and accuracy of during out-of-sample
evaluation period, we examined more deeply the ability of the methods to cap-
ture the mortality improvement over the life span in this section. Moreover, we
observed that some methods have different performances for different stages of
lifespan (Tables 8 and 9). The fitted parameters of the LC model with a fore-
cast of parameter k; and the observed and fitted log mortality rates for females
are presented in Figs. 4 and 5. As discussed before, the parameter k; is used

Table 8 Forecast of life expectancies at birth for Hungarian males and females

Forecast period LC LCp LM BMS HU HUg HUw LL

Male, 2034 - - 7393 - 77.35 7753 77.96 73.19
Female, 2034 81.17 81.06 81.58 82.90 82.22 80.85 83.86 80.96
Male, 2044 - - 7442 - 7933 79.70 8042 74.23
Female, 2044 82.18 82.07 82.65 84.50 83.47 81.94 85.91 82.00
Male, 2054 - - 74.82 - 81.03 81.63 82.97 75.24
Female, 2054 83.16 83.05 83.68 85.98 84.64 82.99 87.81 83.01

A blank place place means the forecast of ey was lower than the observed value of eq for 2014 (2010 for LL)
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Table 9 Forecast of remaining life expectancies at age 65 for Hungarian males and females

Forecast period LC LCp LM BMS HU HUR HUw LL

Male, 2034 21.04 - 17.14 14.77 16.65 17.29 1742 15.21
Female, 2034 20.29 20.19 20.26 2093 20.59 19.35 21.72 19.49
Male, 2044 22.84 - 18.61 15.26 17.71 1849 19.10 15.77
Female, 2044 21.15 21.06 21.18 2212 2152 20.07 2335 2017
Male, 2054 25.02 - 20.27 15.76 18.73 19.67 21.10 16.35
Female, 2054 22.00 21.91 22.08 2327 2241 20.82 24.90 20.87

A blank place means the forecast of egs was lower than the observed value of egs for 2014 (2010 for LL)

for the forecast; the blue spread of k; in Fig. 4 may be implemented for inter-
val forecasting as well (Hyndman and Ullah 2007). The main source of gain in
female life expectancy was the result of the decline in adult and senescence mor-
tality for some particular causes of deaths. Previous studies revealed the contri-
bution of the female population aged 64 years and over was more substantial
on increasing life expectancy than that of middle-aged females those were also
affected by the economic crisis in past (Béalint and Kovacs 2015; Bohk and Rau
2015).

We already compared the forecasts for life expectancies at different ages. Figure 6 shows
the 40-years-ahead forecast of log mortality rates for Hungarian females using different

methods.
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Fig. 4 Fitted components of basic LC method for females of Hungary (1960:2014). The blue area of the
parameter k; presents spread of the parameter under a random walk with drift which is used to make forecast
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Fig.5 Observed (1960:2014) and 40 years ahead forecast (2015:2054) of log mortality rates for females of
Hungary by basic LC method. Years are plotted using a rainbow palette as before. Observed mortality rates

are plotted using dotted line whereas forecast are plotted with regular line. Due to mortality improvement,
the forecasts of mortality rates are below the observed mortality curves and more close to each other

Here, years are plotted again using a rainbow palette, so the beginning years of the fit-
ting period are in red, followed by orange, yellow, green, blue, and indigo, with the most
recent years plotted in violet. All the models forecast a rapid and sharp decline in infant
and adult mortality, except for coherent forecasting (Fig. 6). Except for HU and HUyy,
all other methods are affected by the recent short-run improvement of early-aged mor-
tality around age 5 to 15. For Hungarian female mortality, this improvement occurred
only for a few of the very recent years (Fig. 3) which highly affects the forecasts of BMS,
HUR, and possibly LL. Combined mortality rates of the reference population were higher
across the life span compares to observed female mortality rates for Hungary. As a con-
sequence, the coherent forecasts for the Hungarian females are more pessimistic than
those of the other methods (Tables 8 and 9). We already mentioned it as a drawback of
current settings for choosing reference population in coherent forecasting. Clearly, the
increasing mortality differences over time between the countries of the reference group
have high impact on individual country-specific forecasts. Forecasts of senescence mor-
tality are virtually similar for all methods except for coherent forecasting due to this

reason.

Conclusion and discussion

Summary of results

We compared and contrasted mortality forecasting models for higher mortality regimes
that lack long time series data of good quality, which is common in several Central
and Eastern European (CEE) countries. The performance of the forecasting models for
the nine CEE countries was found to be lower than that observed for low-mortality
countries. No model gives uniquely best performance for all the nine CEE countries
included. All studied LC variants, with the exception of the weighted version of the
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(Hyndman and Ullah 2007) method, resulted in lower future life expectancy than current
observed life expectancy values for Belarus, Russia, and Ukraine. Coherent mortal-
ity forecasting could not overcome the limitations of the LC variants completely by
producing more optimistic forecasts or more accurate forecasts during out-of-sample
evaluation. The UN forecasting technique (through a Bayesian hierarchical model) can
provide a more optimistic forecast than some LC variants for Belarus, Russia, and
Ukraine, but it also produced a wider prediction interval for several of these coun-
tries. The country-specific forecast for Hungary revealed that some of the models
can overcome the shortcomings of pessimistic forecasts of the earlier part of the life

span.

Explanations of the main findings

The performance of the forecasting models for the nine CEE countries was found
to be lower than that of the observed for low-mortality countries. In addition to a
high-mortality regime, the lower performance of the forecasting models for the nine
CEE countries is highly attributable to the irregular mortality trends and a shorter
fitting period. Except for weighted and robust variants of the HU method, most
of the LC variants were not appropriate for some of the high-mortality countries.
The mentioned two methods succeed to produce optimistic forecast for these coun-
tries due to application of different weighting techniques, which was not the case
for the other methods. Except for Hungary and Slovakia, all of these countries suf-
fered from mortality crisis during 1990s, and it was particularly severe for Belarus,
Russia, and Ukraine (Shkolnikov et al. 1998). The accuracy obtained for weighted
HU method during out-of-sample evaluation is thus subject to analyze as this
method gives more weight on recent period than distant past (Hyndman and Ullah
2007).

Coherent mortality forecasting could not overcome the limitations of the LC variants
completely by producing more optimistic forecasts or more accurate forecasts during
out-of-sample evaluation. This might be explained by the high heterogeneity across CEE
countries in terms of mortality levels and patterns. Such heterogeneity increased dur-
ing the severe mortality crisis which Belarus, Russia, and Ukraine underwent during the
1990s (Shkolnikov et al. 1998). This lead to pessimistic forecasts even by coherent model.

In this case, UN forecast (using a Bayesian hierarchical model) can provide more opti-
mistic forecasts: life expectancy at bith rather age-specific rates are considered, and in this
way, the cross-country differences are mitigated. However, due to irregular trends of life
expectancies over time, UN forecasts also produced wider prediction intervals for several
of these countries.

The country-specific forecast for Hungary revealed that some of the models can over-
come the shortcomings of pessimistic forecasts of life expectancy in earlier part of
life. For three LC variants, we observed that the models produce optimistic forecast of
life expectancy at later ages despite of failing to do so for life expectancy at birth for

Hungarian male.

Limitations
The current study have several limitations. Firstly, we could not consider all pos-
sible mortality data. With only nine high-mortality CEE countries we just have a
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snapshot of the limitations of the mortality forecasting models from a different
point of view. This selection was necessary in order to keep data quality at the
highest level. Moreover, we did not consider data of Poland or the Czech Repub-
lic as their mortality patterns are more similar to low-mortality countries. Sec-
ondly, we did not utilize all types of existing mortality forecasting models. For
example, we did not consider behavioral impacts on mortality forecast. Impact of
smoking and alcohol consumption on life expectancy are mentioned in previous stud-
ies (see Luy and Wegner-Siegmundt 2014; Trias-Llimés et al. 2017, for example on
smoking and alcohol consumption, respectively). In addition, forecasting considering
different causes of deaths could also provide more insight. However, data regard-
ing causes of death or risk factors are not available for some of these countries.
Thirdly, we did not compare the interval forecast for LC and HU variants, which
could be another topic for further research. Fourthly, due to the unavailability of
data for later age groups, we restricted the model fitting to age 100. Such trun-
cation is not suitable for a wide forecast horizon, even for a population with less
of an aging problem. Finally, we considered all populations together for coherent
forecasting, without following any particular strategies to choose the best reference
population (Kjeergaard et al. 2016).

Recommendations for future work

Based on the study findings, future research directions for mortality forecasting
can be suggested. A significant improvement would be to develop a new fore-
casting technique flexible enough to handle this sort of irregularities in mortal-
ity trends as most of the LC variants could not perform well in the presence
of irregular mortality trends. Most of the existing methods for mortality forecast-
ing are based on the LC method to some extent. Better performances of the
HU variants can be attributable to smoothing techniques adopted in those meth-
ods. Instead of considering only one-dimensional smoothing (smoothing the age-
specific mortality rates of a given year), incorporating the period and/or cohort
effect may provide different results than those obtained here. Second-level estima-
tion for fitted parameters in the LC method has a great impact on forecast accu-
racy for some countries; an alternative estimation approach at this level could also
be useful. Coherent mortality forecasting clearly indicates a lack of rigid assump-
tions for choosing an appropriate set of countries as a reference group. In the
current methodology, a shortened, harmonized fitting period for a group of coun-
tries also reduces the scope of forecasting. New strategies for choosing a ref-
erence population need to address the issues of increasing mortality differences
between countries over time (mortality divergence). To overcome the lack of mor-
tality data for later age groups (say after age 100), some extrapolation before
forecasting might be useful for longer forecasts. Flexible settings in terms of the
fitting period for modeling the joint mortality data may improve the forecast accu-
racy of country-specific forecasts. Nevertheless, the invention of a new forecasting
method for high mortality countries is necessary based on the findings of the cur-
rent study, as none of the models was completely suitable for the examined nine
CEE countries.
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Appendix
Key features of coherent forecasting for high mortality countries
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Fig. 7 Observed log mortality rates for combined mortality data of (comparatively) high mortality countries.
Years are plotted using a rainbow palette so the earlier years are shown in red, followed by orange, yellow,
green, blue, and indigo with the most recent years plotted in violet. Mortality crisis in recent period is more
visible than previous trend specially for adult and later senescence age groups
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Fig. 8 Observed (estimated) life expectancy at birth for combined mortality data of (comparatively) high
mortality countries (1970:2010)
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Fitted model on joint mortality rates
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Fig. 9 Fitted log mortality rates for combined mortality data of (comparatively) high mortality countries.
Years are plotted using a rainbow palette as before
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Fig. 10 Estimated parameters of first stage LC modeling on joint mortality data. Total 70% variation was
explained by the fitted model
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UN forecast for (comparatively) high mortality countries
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Fig. 11 Forecast of life expectancy at birth for (comparatively) high mortality countries by UN forecast with
95% prediction interval. Results are showed for females only
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Table 10 Forecast of life expectancies at birth using UN forecast method for HMD-2018 and
WPP-20127

Data and Belarus  Bulgaria  Estonia  Hungary Latvia  Lithuania Russia  Slovakia  Ukraine
forecast year

HMD, 2034 78672 78901 83.381 81.165 80.361  80.938 77463 82109 77.507
WPP, 2034 77225 78914 81395  80.600 78.960  79.807 76223 81.071 75621
HMD, 2044 79.370  79.740 84528 82311 81.384  81.851 78265  83.273 78.371
WPP, 2044 78022  79.858 82.371 81.592 79.724  80.645 77204 82057 76.219
HMD, 2054 79952  80.633 85703  83.539 82432 82763 79.079 84436 79.243
WPP, 2054 78812 80.729 83315 82707 80.564 81428 77991  83.053 76.906

tFor WPP-2012 data, the life expectancies were available from 1873 to 2015. The results are shown for females only
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