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Abstract

The COVID-19 outbreak has called for renewed attention to the need for sound
statistical analyses to monitor mortality patterns and trends over time. Excess
mortality has been suggested as the most appropriate indicator to measure the
overall burden of the pandemic in terms of mortality. As such, excess mortality has
received considerable interest since the outbreak of COVID-19 began.
Previous approaches to estimate excess mortality are somewhat limited, as they do
not include sufficiently long-term trends, correlations among different demographic
and geographic groups, or autocorrelations in the mortality time series. This might
lead to biased estimates of excess mortality, as random mortality fluctuations may be
misinterpreted as excess mortality.
We propose a novel approach that overcomes the named limitations and draws a
more realistic picture of excess mortality. Our approach is based on an established
forecasting model that is used in demography, namely, the Lee-Carter model. We
illustrate our approach by using the weekly age- and sex-specific mortality data for
19 countries and the current COVID-19 pandemic as a case study. Our findings show
evidence of considerable excess mortality during 2020 in Europe, which affects
different countries, age, and sex groups heterogeneously. Our proposed model can
be applied to future pandemics as well as to monitor excess mortality from specific
causes of death.
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Introduction
The outbreak of COVID-19 has highlighted the need for sound and timely statistical

analyses and monitoring of mortality patterns and trends. On many occasions, excess

mortality, which is the number of deaths above expectations in the absence of excep-

tional events, e.g., a pandemic, exceptional influenza season, or heatwave, is considered

to be the most appropriate indicator to measure the overall burden of the pandemic

with respect to mortality (National Academies of Sciences & Medicine, 2020). As such,

the excess mortality due to COVID-19 has recently received considerable attention, in-

cluding tracking by major news outlets of this indicator across countries (see, e.g., The

Economist, 2020). The COVID-19 pandemic has stimulated the demand for the timely

release and publication of mortality data by national authorities (Leon et al., 2020).

While aggregate all-cause mortality data are increasingly being released, the timely

reporting of cause-specific data by demographic subgroups is still underdeveloped.

However, such information would enable near real-time assessments of the excess mor-

tality caused by specific diseases. Moreover, the widespread statistical approaches used

thus far for estimating excess mortality have been rather simplistic, as they rely on ra-

ther basic statistical measures, such as the number of deaths above an ex ante expected

value, which do not include or consider the stochasticity or connections among the

mortality developments of different demographic or geographic groups. Strong correla-

tions in mortality trends exist not only among different demographic groups but also

among adjacent countries (Vanella, 2017); the underlying factors that drive mortality

reductions, such as advances in medical care and hygiene, reach all of these groups to

some extent (Vanella & Deschermeier, 2020). Therefore, advanced excess mortality as-

sessments should simultaneously analyze a multitude of demographic and geographic

groups. Furthermore, rather short time series are generally considered in the computa-

tions of excess mortality, which cannot sufficiently capture long-term trends.

In this article, we propose a stochastic framework for estimating excess mortality that

is based on a Lee-Carter modeling approach. We develop a comprehensive model that

can consider the multidimensionality (and eventual collinearity) of the data analyzed,

which consist of several long-term time series for 19 different countries, both sexes,

and four age groups. This allows us to consider the long-term mortality trends present

in the data. Finally, the model can produce probabilistic statements concerning the ex-

cess mortality that occurs during a particular event. While our case study addresses the

current COVID-19 pandemic, our method can be applied to future outbreaks of other

pathogens, as well as to other major events that influence mortality at larger demo-

graphic and/or geographic scales.

The following section provides a literature review starting with the current approaches

used for excess mortality estimations in general and specifically during the COVID-19

pandemic. Then, we provide an overview of stochastic mortality models, which address

multiple populations in parallel. The latter provides a theoretical basis for our multidi-

mensional mortality forecast model, which is presented in Section 3. Based on this, a sto-

chastic investigation of excess mortality during the COVID-19 pandemic by country and

demographic group is conducted, and the results are presented in Section 4. These results

are then discussed, along with their implications for mortality forecasting. We finally draw

conclusions from our findings and provide an outlook on the further need for develop-

ments in excess mortality evaluations and mortality forecasting.
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Literature review
Assessment of excess mortality and estimates for COVID-19

Excess mortality due to certain circumstances is not directly observable. We would

need to know how many deaths would have been observed without the event under

study, which in our case, is the COVID-19 pandemic. Therefore, we compare the ob-

servations to a hypothetical alternative scenario in which the event supposedly causing

excess mortality had not occurred. The outcome under this scenario can only be esti-

mated based on modeling. We can estimate this hypothetical course based on forecast-

ing by using historical data as a baseline and extrapolating the mortality trends from

the data. In our case study, we estimate how many deaths would have occurred in 2020

if no pandemic or measures against the pandemic had occurred. These hypothetical

deaths from the mortality forecast can then be compared to the observed deaths to

quantify the amount of excess mortality due to the pandemic.

Estimations of excess mortality date back to the studies on influenza and pneumonia

conducted by Collins et al. for the USA (Collins, 1932; Collins, Frost, Gover, & Syden-

stricker, 1930). The authors calculated the weekly expected death rates due to influ-

enza, pneumonia, and other causes for the whole population1 as the median of a 7-year

baseline period. These were then compared to the observed death rates due to these

causes during a certain period of an epidemic. The positive differences between the ob-

served and expected mortality rates were then defined as excess mortality. Serfling

(1963) extended this approach by fitting parametric Fourier (i.e., trigonometric) models

to death rate time series separately by age groups and by selected causes of death2 for

estimating monthly excess mortality. Housworth and Langmuir (1974) proposed a sto-

chastic extension of Serfling’s approach and assumed that the residuals between ob-

served and expected death rates followed a t distribution. Foppa and Hossain (2008)

proposed a Bayesian extension of that model for the excess death numbers due to

influenza.

Some approaches have been proposed to estimate the excess mortality due to

COVID-19 during the current pandemic. We present some already published results in

the form of scientific publications and official reports here.

Magnani et al. estimated the expected mortality rates and daily death numbers for

Italian regions from January 1st to April 15th, 2020, by averaging the daily mortality

rates for the years 2015–2019. Assuming that the death counts follow a Poisson distri-

bution, they also estimated the 95% confidence intervals (CIs) for the daily death num-

bers separately for the age groups below 60 years and 60 years and above. They derived

a statistically significant excess mortality in Italy due to COVID-19 from March 7th

until the end of the study period and estimated 45,032 mean excess deaths overall, a

figure that is more than double the death numbers officially attributed to COVID-19

(Magnani, Azzolina, Gallo, Ferrante, & Gregori, 2020). This discrepancy is likely due to

an undercounting of COVID-19 deaths in the statistics, deaths due to other causes in-

directly associated with COVID-19, or a flawed forecasting procedure used for quanti-

fying the expected deaths. Michelozzi et al. (2020) further showed that this excess

mortality was concentrated in northern Italy, which has been hit harder by the

1Census estimates.
2Pneumonia or influenza, cardiovascular or renal, and others.
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pandemic than in central and southern Italy, and that excess mortality is more preva-

lent in men and the elderly.

The New York City Department of Health and Mental Hygiene (DOHMH)

COVID-19 Response team used the regression model of the US Centers for Dis-

ease Control and Prevention (CDC) based on the years 2015–2019 to estimate the

number of expected deaths. The differences between the observed numbers of

deaths and the ex ante expectations were defined as excess deaths. This surveil-

lance system is normally applied to estimate the excess deaths that are attributable

to influenza (Centers for Disease Control and Prevention, 2019), but it was also

used to estimate the excess deaths due to COVID-19 in New York City between

March 11th and May 2nd, 2020. The authors identified over 24 thousand excess

deaths over the observed period, of which close to 14 thousand were laboratory-

confirmed COVID deaths, while the other 5 thousand were probably associated

with COVID-19 (New York City Department of Health and Mental Hygiene

COVID-19 Response Team, 2020).

The Institute for Health Metrics and Evaluation (IHME, 2021) recently presented an

ensemble approach for estimating the excess death rates for 2020, which estimates the

total COVID-19-associated death rate based on the expected weekly or monthly death

rates derived from past data, observed overall death numbers, and reported COVID-19

deaths. The model aims to derive the actual COVID-19-associated deaths to account

for inaccurate national reporting for the 20 study countries. EUROMOMO provides

concurrent excess mortality estimates based on a fit generalized linear model (GLM) by

age group for 23 European countries. The model is fitted to a maximum of five previ-

ous years of data. The graphs reported by EUROMOMO show a general pattern of ex-

cess mortality in Europe since April 2020 for individuals aged 15 and older (Statens

Serum Institut, 2020a, 2020b).

These approaches do not include the correlations of mortality rates among age

groups and/or among countries. From a cross-country perspective, it would be appro-

priate to include these. The mortality trends in Europe share strong common patterns,

not only among demographic groups but also among countries (Bergeron-Boucher,

Canudas-Romo, Pascariu, & Lindahl-Jacobsen, 2018; Vanella, 2017), as the underlying

factors causing mortality decline, such as medical advances, better hygiene, economic

and educational advances, or better nutritional behavior, tend to affect different demo-

graphic and adjacent geographic groups simultaneously (Luy & Di Giulio, 2006; Vanella

& Deschermeier, 2020; World Health Organization, 2015). Similarly, we observe how a

pandemic affects the mortality levels of different groups at the same time (Statens

Serum Institut, 2020a). Disregarding these correlations in the analysis would ignore

these concurrent mortality developments, which would lead to biased prediction inter-

vals in the forecasts.

Furthermore, the aforementioned approaches do not consider long time series of

weekly or monthly mortality data, which is an important factor given the observed

long-term trends of mortality improvements. The cardiovascular revolution that started

around the 1970s in Europe provided strong improvements in mortality, especially at

older ages (Vallin & Meslé, 2004; Vaupel et al., 1998). Not including these trends in the

analysis might lead to a systematic bias in excess mortality estimations. Our proposed

approach aims to overcome these limitations by employing a demographic perspective.
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Appendix A provides a summary comparison of the presented approaches and results,

including ours.

More recently, other approaches to estimate excess mortality levels across countries

have been proposed. Kontis et al. (2020) introduced an ensemble of 16 Bayesian models

to estimate the excess mortalities in 21 industrialized countries during the first wave of

the COVID-19 pandemic. Nemeth, Jdanov, and Shkolnikov (2021) implemented six dif-

ferent approaches to estimate the baseline mortalities for all countries in the short-

term mortality fluctuations dataset of the Human Mortality Database and introduced a

web-based application for visualizing the excess mortalities across age groups, years,

and countries. Finally, Islam et al. (2021) estimated the excess mortalities in 29 high-

income countries during 2020 by employing an overdispersed Poisson regression

model.

Multi-population stochastic mortality forecasting

There is a large amount of literature on mortality forecasting approaches. As it is not

our intention to provide a full literature review here, interested readers are referred to

the compilation by Janssen (2018). We will restrict our review to those approaches that

we believe are important in this context, which are stochastic models that include age-

specific mortalities and multiple populations.

One forecast approach, which is of major importance, is based on principal compo-

nents (PCs). A PC is a linear combination of a group of variables and in our context,

age-specific mortality rates. The PCs are derived by singular value decomposition. This

method has two major advantages. First, the high dimensionality, which results from a

collection of several mortality rate variables among age groups, sex, and countries, can

be analyzed relatively efficiently. Second, the correlations among different variables,

such as age- and sex-specific mortality rates, are included in the analysis, which are

very important in forecasting to adequately quantify the uncertainties of mortality fore-

casts. An illustrative explanation of the method when applied to age- and sex-specific

survival rates is given by Vanella (2018). The application of principal component ana-

lysis (PCA) to age-specific mortality rates goes back to Ledermann and Breas (1959),

who used it for transforming French data to derive common mortality trends. Le Bras

and Tapinos (1979) proposed the use of PCA to project mortalities in France. Bell and

Monsell (1991) extended this framework by including autocorrelations of the PCs by

employing autoregressive integrated moving average (ARIMA) models3 for mortality

forecasting in the US. Lee and Carter (1992) identified the first PC in that model as a

general mortality index, which covered the vast majority of mortality trends that were

observed over all age groups and proposed a random walk with drift model to forecast

the index, which can then be retransformed to forecast mortality rates.

Tuljapurkar, Li, and Boe (2000) qualitatively showed that there were large correla-

tions in mortality trends among the G7 countries, which could be covered well by the

Lee-Carter model. Booth, Maindonald, and Smith (2002) proposed a graphical method

for determining the optimal baseline period to inform the model. A baseline that is too

short assumes that the long-term future follows the near past, which appears to be un-

realistic. On the other hand, the very long past data may not apply to future trends,

3See Box et al. (2016) or Shumway and Stoffer (2016) for detailed presentations of ARIMA models.
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especially in the shorter term. While the mortality index is modeled as a linear process,

Brouhns, Denuit, and Vermunt (2002) proposed a GLM version of the Lee-Carter

model. The classic Lee-Carter model assumes independence between the mortalities of

females and males, which can be rejected (see, e.g., Bergeron-Boucher et al., 2018;

Vanella, 2017, on the correlation of mortality among both sexes). Li and Lee (2005)

therefore proposed an extension, the so-called common factor model, which includes

the correlations in cross-country mortality and the correlations between the two sexes

in the mortality trends to some degree in the analysis. Hyndman and Ullah (2007) pro-

posed a nonparametric extension of the Lee-Carter model. Russolillo, Giordano, and

Haberman (2011) proposed extending the Lee-Carter model by applying a three-mode

PCA to include the correlations in cross-country mortalities in the model. However,

they ignored the sex-specific differences in their model. Vanella (2017) proposed a

simulation approach that forecasts age- and sex-specific survival rates for 18 European

countries while considering the correlations in mortality trends among age groups,

sexes, and countries via PCA. The author demonstrated an efficient way to include

similar mortality developments among different countries in one model, as PCA can

cover the majority of the trends that are witnessed simultaneously by different coun-

tries. We will use a derivation of that approach for our analysis. Bergeron-Boucher,

Canudas-Romo, Oeppen, and Vaupel (2017) proposed a modification of the Li-Lee

model by leveraging age-at-death distributions and compositional data analysis to pro-

duce coherent forecasts for 15 Western European countries.

From our literature review, we see that, with a few exceptions, research on mortality

forecasting has focused on a national level. In some cases, the mortality forecasts for a

collection of countries, or even at the global scale, are of interest. Separate forecasts

would not only be unfeasible but would also ignore common trends among countries.

Some authors have conducted stochastic projections of groups of countries or at a glo-

bal scale by using Bayesian approaches, which assume an a priori distribution for some

parameter or variable either based on auxiliary data or subjective assumptions (see

Kruschke, 2015; Lynch, 2007 on Bayesian modeling). To capture the major problem of

the Lee-Carter model of systematically underestimating the uncertainties in mortality

forecasts, Pedroza (2006) proposed a Bayesian extension of the classic Lee-Carter

model, which includes the uncertainty of all parameters by using a Markov chain

Monte Carlo (MCMC) simulation. King and Soneji (2011) suggested considering the

assumptions of the trends in smoking behavior and obesity in the projections of age-

specific mortality rates for the US through a Bayesian hierarchical model. Raftery,

Chunn, Gerland, and Ševčíková (2013) proposed a Bayesian hierarchical model for joint

probabilistic projections of cross-country male life expectancies by cohort using time

series data on life expectancy in combination with judgmental projection data by na-

tional experts. The approach was then expanded for females by simulating the gender

gap in life expectancy by regression analysis of the international data (Raftery, Lalić, &

Gerland, 2014). The Raftery model forms the basis of the life expectancy projections of

the United Nations. From these projections, they derive age- and sex-specific mortality

rates for all countries with three different techniques, which depend on the quality of

the mortality data available for the countries under study (United Nations, 2019). Anto-

nio, Bardoutsos, and Ouburg (2015) provided a Bayesian version of the Lee-Carter

model that enabled joint mortality projections among various countries.
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This review shows that there is a large battery of sophisticated approaches for sto-

chastic and cross-country forecasting of mortality, which could be applied to provide

more sophisticated and realistic estimations of excess mortality. However, the widely

used approaches for excess mortality modeling do not make use of these possibilities

thus far. Our contribution adds to the literature by improving the classic excess mortal-

ity estimations with modern methods in the stochastic forecasting of cross-country

mortality.

Data and methods
Data

We extracted recently published estimates of weekly mortality rates by sex and age

groups below 15 years, 15 to 64 years, 65 to 74 years, 75 to 84 years, and aged 85 and

above, which were provided by the short-term mortality fluctuation data series of the

Human Mortality Database (2021) (HMD). The data provide 52 weekly estimates of the

mortality rates for a series of calendar years and start from different country-specific

time points. To retain consistency with the annual mortality rates, the mortality rate of

country c, gender g, age group a, in calendar week w in year y, mc, g, a, w, y, is calculated

by dividing the death numbers of the demographic, geographic, and temporal combina-

tions by the corresponding annual population exposure to the risk of death, Ec, g, a, w, y,

divided by 52:

mc;g;a;w;y ¼ Dc;g;a;w;y

Ec;g;a;y=52
� �

We select all countries with available data since the start of 20004. We take the data

for the entire period from week 2, 20005 to week 52, 2019 for Austria, Belgium, Estonia,

Finland, France, Hungary, Israel, Latvia, Lithuania, the Netherlands, Norway, Poland,

Portugal, Scotland, Slovakia, Slovenia, Spain, Sweden, and Switzerland, for which data

are available and the population and death numbers are sufficiently high to derive rep-

resentative estimates of weekly mortality levels. To avoid zero values in the data, we ag-

gregate the age groups below 15 and 15–64 years into a single group. This is a very

large group with heterogeneous mortality risk (Bohk-Ewald & Rau, 2017), especially

concerning its fatality risk with respect to COVID-19 (Goldstein & Lee, 2020; Vanella

et al., 2021). Alternatively, we could consider discarding persons from the youngest age

group from the analysis. To retain the full data available, we prefer the first option,

which, as we will show, does not bias our understanding of excess mortality in 2020.

We compute the mortality rates in this wider group using the aggregated deaths and

exposures that were extracted from the HMD. Finally, we arranged the data in a

1039×152 matrix6 of the time series of weekly age-, sex-, and country-specific mortality

rates (WASCSMRs). In Appendix B, we report all of the country-, sex-, and age-

specific combinations that are analyzed in our paper. For the final step of our analysis,

4With the exceptions of Luxembourg and Iceland, whose relatively small populations and death numbers do
not allow derivation of representative weekly estimates.
5Scotland does not offer data for week 1, 2000. To include Scotland in the analysis, we start in week 2 for all
countries.
61039 weeks in the rows, 4 age groups times 2 sexes times 19 countries in the columns.
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we use daily reported data on COVID-19-associated deaths by country, which are pro-

vided by the European Centre for Disease Prevention and Control (2021a) (ECDC).

Methods

We follow Vanella (2017), which was presented in 2.2. To stabilize the variances in

mortality rates, especially for older ages, we employ a logit transformation of the

WASCSMRs (Vanella, 2017). We first perform PCA on the logit-WASCSMR time

series such that we obtain a set of PCs with the ith PC being a linear combination of all

logit-WASCSMRs:

pi;w;y ¼
X152
j¼1

λi; jμc;g;a;w;y; i ¼ 1;…; 152;

where μc, g, a, w, y is the logit-WASCSMR of country c, sex g and age a, in calendar

week w of year y and λi, j is the loading of the jth mortality variable on the ith PC.

Figure 1 shows the loadings of the first PC (PC1). The loadings can be interpreted as

correlations between the PCs and original variables (Vanella, 2018) and in this case, the

logit-WASCSMRs.

The loadings of PC1 are strictly negative, which imply negative correlations with all

mortality rates. Thus, increases in PC1 ceteris paribus are associated with decreases in

all WASCSMRs under study. PC1 is hence a classic Lee-Carter mortality index (Lee &

Carter, 1992) and explains 55% of the overall variance in the 152 time series. Therefore,

we will refer to it as the Lee-Carter Index in the remainder of this paper. Furthermore,

it is interesting to observe that the absolute values of the loadings for the younger age

group (e.g., 0–64 years) are nearly always smaller than those for the older groups. As

such, any increases in PC1 imply greater mortality reductions at older rather than

younger ages. Figure 2 shows the time series of PC1 from 2000 to 2019. The vertical

lines indicate week 1 of each year.

Fig. 1 Loadings of principal component 1
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The curve exhibits a highly seasonal pattern, with strongly increasing mortality (i.e.,

lower PC1values) in the winter season and decreasing mortality in summer (i.e., higher

values). The general trend is increasing, which corresponds to decreasing mortality

trends but has been concave since approximately 2005, which means that mortality im-

provements have had a diminishing trend since then. To capture these different fea-

tures of the time series, we iteratively fit models 1, 2, and 3 from Table 1 to the weekly

PC1 values for the years from 2000 to 2019, as illustrated in Fig. 2, by using ordinary

Fig. 2 Past course of the Lee-Carter Index

Table 1 Iterative trend function coefficients with 95% CIs to Lee-Carter Index

Parameter Model 1 Model 2 Model 3

Intercept 39.49
(39.4; 39.57)

33.4
(33.26; 33.54)

32.95
(32.79; 33.11)

cosðπw26Þ 1.34
(1.22; 1.47)

1.31
(1.27; 1.35)

1.05
(0.96; 1.15)

expðw−t0
β Þ

1þ expðw−t0
β Þ

- 9.73
(9.51; 9.95)

9.74
(9.53; 9.94)

Spring - - 0.71
(0.58; 0.83)

Summer - - 0.55
(0.36; 0.73)

Autumn - - 0.5
(0.4; 0.61)

R2 0.3037 0.9153 0.928

AIC 3,707 1,520 1,358

BIC 3,722 1,539 1,392
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least squares (OLS). The three resulting models are compared via Akaike’s information

criterion (AIC) and the Bayesian information criterion (BIC). Table 1 gives the results

of this range of model fits.

Model 1 includes a cosine term that represents the baseline seasonality of the

year, which is similar to the Serfling approach, with w = 0 being calendar week

31, 2000. The transformation 2π
52 ¼ π

26 of the argument leads to a periodicity of

52 weeks for the cosine term, as a standard cosine function has a periodicity of

2π. The interested reader may refer to Appendix C for more details on cosine

functions. This choice of origin leads to the maximization of R², which indicates

the best fit to the observed seasonality. We checked the full Fourier model as

well but discarded the sine term, as it does not lead to any improvement in the

model fit while worsening the efficiency of the model, which is represented by

higher values of the information criteria. Model 2 includes an inverse logistic

growth function as a second explanatory variable, which can be used to simulate

a growth function, which is similar to the implementations in Vanella (2017),

Vanella and Deschermeier (2018), and Vanella and Deschermeier (2019), with w

being the week and t0 being a parameter to be iteratively estimated to maximize

the model’s R². β is a parameter that was estimated by maximum likelihood be-

fore running the OLS7 regression, as it cannot be derived from OLS but instead

must be defined beforehand. Spring, Summer, and Autumn in model 3 are binary

variables, which are 1 during the respective seasons and 0 otherwise. Winter is

therefore the baseline season. Spring runs from calendar weeks 13 to 25, sum-

mer runs from calendar weeks 26 to 38, and so on. By following Occam’s Razor,

a simple model should be preferred to a more complex one if it performs simi-

larly well (Bijak, 2011). A model is most efficient if it minimizes the information

criteria. We see that the inclusion of an inverse logistic growth function in

model 2 substantially increases the quality of the model in comparison to model

1, as it leads not only to a very large increase in R² from 30.4 to 91.5% but also

to a large decrease in both the AIC and BIC. Therefore, the model fit to the

data increases significantly, which leads to a more efficient model. However, this

long-term trend is generally not considered in models of excess mortality, as ex-

plained in Section 2.1. An extension of the model by seasonal dummies, as in

model 3, leads to additional significant improvements in the fit, as the trigono-

metric function systematically underestimates the mortality peaks in winter while

overestimating the values in summer. Moreover, a cosine function is section-

wise point symmetric, as illustrated in Appendix C. As the mortality trends dur-

ing the year do not behave this symmetrically, the seasonal dummies provide

some of the asymmetric behavior of the mortality curve, which is more realistic.

Model 3 fits the data well with an R² value of nearly 93%. Both information cri-

teria favor this model as well. The coefficients of the seasonal dummies should

not be used for concrete interpretations, however. They simply serve as correc-

tion factors to systematic under/over-estimation of the Fourier series, which sys-

tematically underestimates mortality in winter and overestimates mortality in

7Note that OLS and MLE lead to the same estimates under the Gauß-Markov assumptions. OLS, however,
allows for computation of the R² value.
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summer. The residuals from the quantified model are fitted by using a seasonal

autoregressive integrated moving average (SARIMA) model, which is chosen by

using a series of tests following Vanella (2018). Figure 3 illustrates the fit of

model 3 (continuous line) to the data (dots). Please note that the line starts at

the beginning of 2001 since the model prediction needs 1-year lags, which are

not yet available in 2000.

The forecast function according to our optimal model 3, which is illustrated as a red

line, is

PC1 wð Þ ¼ 32:95þ 1:05 cos
w�π
26

� �
þ 9:74

exp
w−220
482:05

1þ exp
w−220
482:05

þ 0:71 f þ 0:55sþ 0:5aþ α wð Þ;

with

� PC1(w) is the value of the first PC in week w;

� α wð Þ ¼ α w−1ð Þ þ 0:16α w−52ð Þ−0:16α w−53ð Þ þ ε wð Þ−0:26ε w−1ð Þ; ε wð Þ � Ν 0; 0:322
� �

;

� w = 0 corresponds to calendar week 31, 2000;

� f has a value of 1 in the spring weeks, i.e., calendar weeks 13–25, 0 otherwise;

� s has a value of 1 in the summer weeks, i.e., calendar weeks 26–38, 0 otherwise; and

� a has a value of 1 in the autumn weeks, i.e., calendar weeks 39–51, 0 otherwise.

Figure 4 shows the time series with the median forecast from model 3 with theoret-

ical 95% prediction intervals (PIs).

Fig. 3 Course of the Lee-Carter Index for 2000–2019 with model fit
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The Lee-Carter Index can serve as a summary indicator of overall mortality, as it cap-

tures the main mortality trends8. The loadings of the remaining PCs are not considered

to provide straightforward interpretations and will be assumed to be random walk pro-

cesses9, following Vanella (2017), as our tests show that random walk models perform

reasonably well in reproducing the series.

The Lee-Carter Index covers the general mortality trends among age groups, sexes,

and countries (Lee & Carter, 1992; Vanella, 2017). Therefore, the weekly differences be-

tween its development and our forecast provide a general assessment of excess mortal-

ity by group. For this, we multiply the loadings from Fig. 1 by the HMD estimates of

the WASCSMR for the year 2020 for the study countries, and thereby derive hypothet-

ical observations of the Lee-Carter Index, and fix the loadings that were derived from

the baseline data:

cPC1 τð Þ ¼
X152

i¼1
λi;1μi;τ; τ ¼ 1; 2;…:; 52;

with

� λi, 1 is the loading of the ith WASCSMR on the Lee-Carter Index

� μi, τ is the HMD estimate of the ith logit-WASCSMR for week τ.

Fig. 4 Historic course of the Lee-Carter Index with median forecast and 95% prediction intervals

8Appendix F provides the shares of the variance in the original variables that are explained by the PCs.
9E.g., PC2 covers the cohort shifts within age groups. For long-term forecasts, the PC should therefore be
modeled in more detail. Within the scope of our paper, which is an investigation of the short-term fluctua-
tions in mortality, the random walk assumption is sufficient.
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This will enable a direct comparison between the course of the PC and its expect-

ation based on the time series data. The results of this approach will be presented in

Section 4.

We then use a Monte Carlo simulation for each PC to simulate 10,000 trajectories of

the weekly development of all PCs for 2020. Since the PCs are uncorrelated (Vanella,

2018), independent simulations of their future paths do not lead to biased estimations

of mortality rates, which are then derived from these. The results consist of 10,000 tra-

jectories of each PC, which can be retransformed into weekly trajectories of the logit-

WASCSMR. For instance, let Πt be the simulation matrix of all PCs (10,000×152) in

period t. The corresponding simulation matrix of the logit-WASCSMRs is then

logit Atð Þ ¼
X152

i¼1
ΠtΛ

−1;

where Λ−1 is the inverse of the loading matrix that results from the singular value de-

composition. In the next step, we derive the trajectories of the WASCSMRs by taking

the inverse logit transform of logit(At), namely, logit−1[logit(At)] =At. All simulations of

the mortality rates are now within the realistic range (0;1), which was achieved by the

initial logit transformation of the input data.

The distribution of the differences among the observed WASCSMR and the respect-

ive forecasts can then provide a probabilistic statement regarding the actual degree of

excess mortality that is observed during a certain period.

The last part of the analysis compares our weekly estimates of excess mortality with

the officially reported COVID-19-attributed deaths to assess the differences between

the two data sources. For this, we compute the excess mortality for the entire year of

2020, i.e., during the COVID-19 outbreak.

Results
Figure 5 shows the course of the Lee-Carter Index since the beginning of 2017 and its

forecast until the end of 2020 with 95% PIs as described in Section 3. Moreover, the

violet dashed line provides the hypothetical course under the loadings that were derived

from the 2000–2019 data.

The mortality development oscillates around its mean forecast up to week 10, i.e., the

first week of March 2020. After that, it leaves that course and sharply decreases. In

week 13, it even falls below the lower bound of the 95% PI. Afterward, it stabilizes

within the 95% PI, yet is below the expected course. In autumn 2020, the curve de-

creases sharply once more and exceeds the lower bound of the 95% PI. Overall, the

Lee-Carter Index shows a level for 2020 that is similar to that in 2017. Thus, the cross-

country mortality levels in early spring and autumn are statistically significantly higher

than the realistic trends that were derived from the previous 20 years of data.

By retransforming the PC forecast to forecasts of the WASCSMRs and multiplying

those with the population estimates from the HMD, we derive weekly estimates of

deaths for all subgroups, which enable comparisons of the observed mortality levels

with the expected mortality levels in absolute numbers. Figure 6 illustrates the overall

observed deaths for 2020 for the 19 study countries compared to the respective predic-

tions with 75% and 95% PIs.
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Most of the observations are within the limits of the 75% PI; in week 12, the upper

limit is exceeded, while the dot remains within the 95% PI. Between weeks 13 and 16,

however, the number of deaths exceeds the upper limit of the 95% PI. By the end of

the year, the decrease in the Lee-Carter Index is mirrored by the increased death

counts, which in calendar weeks 44 and 45 even exceed 75% PI. More detailed results,

which are stratified by sex and age group, can be found in Appendix D.

One limitation of analyzing aggregate results, such as those shown in Fig. 6,

is that the 19 countries under study adopted different strategies to fight the

Fig. 5 Forecast of Lee-Carter Index for 2020 with 95% PIs and actual course

Fig. 6 Observed and predicted weekly deaths in 2020 for the 19 study countries. Sources: Human Mortality
Database (2021); Computations and design by the authors
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COVID-19 pandemic, with some countries implementing stronger nonpharma-

ceutical interventions (NPIs) than others (European Centre for Disease Preven-

tion and Control, 2021b). As such, more informative results can be derived

from analyzing the country-specific results. Figures 7, 8, and 9 show the

country-level excess mortality effects during the COVID-19 crisis. The countries

shown in Fig. 7 exhibit significant excess mortalities, especially between calen-

dar weeks 13 and 17. While the scales on the ordinate are the same for the

countries located on the same horizontal axes of the panels, the reader should

be careful with comparisons between the figures on one vertical axis, as the or-

dinates are different.

The case of Poland is special, where the deaths have been close to expectations for

most of the year and only after week 40, in autumn 2020, exceeded the upper bounds

of the PIs. This development has been suggested to be associated with the presidential

vote in Poland taking place in summer 2020. In preparation for the vote, the Polish

government loosened the strict COVID-19 response measures it had earlier established,

as Poland appeared to have managed the epidemic well until then. Traveling was even

subsidized, and pre-vote rallies were organized where many of the earlier measures

were no longer adhered to. These changes in behavior ought to have been associated

with sharp rises in infection rates and subsequent deaths observed since late summer

(Kość, 2020).

Figure 8 shows the results for the Northern European countries, i.e., the Scandinavian

and Balkan countries that were without significant excess mortalities.
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Fig. 7 Observed and predicted weekly deaths in 2020 by country for countries with statistically significant
excess mortality. Sources: Human Mortality Database (2021); Computations and design by the authors
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These countries appear to have managed the epidemic well, and they not only show

deaths that are close to expectations but are even mostly below expectations. In par-

ticular, the Balkan countries started proactive measures, such as border tests, in mid-

January 2020 to avoid import of the virus by travelers (European Centre for Disease

Prevention and Control, 2021b).

Figure 9 shows the analysis for the remaining study countries that had no significant

excess mortalities. These include some Southern and Eastern European countries,

which appear to have managed the epidemic well and kept the number of deaths re-

markably close to the ex ante expectations or even below.

Finally, we investigate how our results are related to the official data on COVID-19-

associated deaths. Figure 10 shows the weekly excess mortality numbers for 18 of the

study countries10, which are derived from our simulations with 75% and 95% PIs, along

with the official COVID-19-associated deaths, as provided by the ECDC. The bottom

panel shows the differences between the excess mortality estimates and COVID-19

deaths.

After subtracting the COVID-19 deaths, there were no significant deviations from the

expected deaths until calendar week 12. The excess mortalities in calendar weeks 13

and 14 were slightly augmented even after adjusting for the COVID-19 numbers. After

the introduction of COVID-19 countermeasures, the COVID-19 adjusted mortalities

were below expectations for most of 2020, which indicates effective countermeasures;
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Fig. 8 Observed and predicted weekly deaths in 2020 by country for the Northern European Countries
without statistically significant excess mortalities. Sources: Human Mortality Database (2021); Computations
and design by the authors

10Excluding Scotland, as there are no weekly COVID-19-specific time series data on mortality available.
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these countermeasures not only reduced the number of direct COVID-19 deaths but

also showed a tendency to prevent deaths due to other causes. However, in autumn

2020, an increase in the number of excess deaths due to the second wave of COVID-19

occurs.

Discussion
The COVID-19 pandemic has influenced the mortality patterns and trends across the

world since its outbreak at the beginning of 2020. Similar to other analyses (Magnani

et al., 2020; Michelozzi et al., 2020; Statens Serum Institut, 2020a), we confirm the pres-

ence of clear excess mortalities in several countries with strong infection dynamics dur-

ing 2020. Since our study countries enacted strict countermeasures to contain the

spread of the virus over the year, we found less evidence, with Poland as the exception,

of statistically significant excess mortalities in the second half of the year. The death

numbers, when adjusted for the official COVID-19-associated death statistics, even

show slight tendencies to be lower during 2020 in comparison to their ex ante pre-

dicted levels, which implies that the NPIs introduced during 2020 not only reduced the

number of direct COVID-19-associated mortalities but also decreased deaths due to

other causes. However, preliminary studies have shown that the overall effect of the

COVID-19 pandemic has had a large negative impact on life expectancies in most of

the countries that we analyzed (Aburto et al., 2021).

Our estimate of excess mortalities is more precise than previous approaches and

shows the uncertainty of these estimates that is based both on the demography of
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Fig. 9 Observed and predicted weekly deaths in 2020 by country for the remaining countries without
statistically significant excess mortalities. Sources: Human Mortality Database (2021); Computations and
design by the authors
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countries and long-term mortality trends. Previous approaches do not sufficiently in-

clude stochasticity in their predictions, as they neither consider autocorrelations of the

mortality time series (be it death numbers or death rates) nor the cross-correlations

among the mortality series in their models.

Moreover, some models do not consider the long-term trends in mortality at all, as

they simply take the average values of the previous years. Our literature review has

shown that there could be good arguments for considering a shorter baseline period in

excess mortality estimations if we believe the longer baseline would not be representa-

tive for the near future. In such instances, the longer baseline could bias our predic-

tions and lead to poor estimations of excess mortalities. This could be the case if we

had observed extraordinary events in the long past, which we deemed irrelevant for

predicting the near future. A baseline of 20 years, as we have chosen for our model, ap-

pears to be a good trade-off: the countries that we studied did not experience particu-

larly acute circumstances during the baseline period, which would distort our excess

mortality estimations. Moreover, we know from asymptotic theory that a longer base-

line period, i.e., more input data, delivers better estimates of the variance (Wooldridge,

2013), and in our case, the predictions of future variances due to different mortality de-

velopments. Our models, especially the comparison between model 1 and model 2,

have demonstrated the improvement in model fits by including a long-term trend.

Some studies include trending behavior, but only for the last 4 or 5 years, which does

not sufficiently cover the long-term mortality trend, as we observe decreasing mortality

trends in the developed countries since at least the early 1970s (Vanella, 2017; Vaupel

Fig. 10 Excess mortality distribution with official COVID-19-associated deaths by calendar week for 18 study
countries. Sources: European Centre for Disease Prevention and Control (2021a); Human Mortality Database
(2021); Computations and design by the authors
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et al., 1998). Previous approaches to excess mortality estimation therefore systematically

underestimate the variances in the forecasts.

Forecasts are less certain with increasing distance between the time at which the fore-

cast was conducted and the time for which the forecast is conducted. This

phenomenon is represented by the increasing widths of the PIs (e.g., Box, Jenkins, Rein-

sel, & Ljung, 2016; Vanella & Deschermeier, 2020). The literature on excess mortality

instead shows constant widths of the intervals. Moreover, not all approaches appear to

perform well in the winter season. The Statens Serum Institut (2020a), for instance,

shows significant excess mortality in all winter seasons. As the excess mortalities are

the differences between the numbers of observed and expected deaths, their forecast

seems to be systematically misspecified for winter. Our model tries to account for these

limitations of previous approaches and can, due to its cross-country perspective, be well

implemented for a multipopulation analysis of excess mortality.

As the magnitude of our results does not permit us to report everything that could

be derived from our model, we restrict the results to one dimension at a time (e.g., ei-

ther demographics or geography by week). Indeed, we derive simulation results for all

152 variables. To illustrate the depth of our analysis, we have added the detailed results

for all age groups in Spain as an example in Appendix E, since Spain is one of the lar-

ger countries in Europe and has witnessed significant mortality due to COVID-19.

Moreover, the Spanish COVID-19 data and surveillance are of relatively high quality.

Our results show that there appears to be a general excess mortality caused by the

COVID-19 pandemic, which affects different age groups and countries heterogeneously.

We needed to combine the population below age 65 into a single group since the

HMD data do not differ within the age group of 15–64 years and the number of deaths

under age 15 has been too few for meaningful statistical analysis. This somewhat limits

our understanding of the sensitivity of mortality in the different age groups. However,

this issue did not bias our understanding of the overall excess mortality since the excess

mortality for persons under 65 years of age was found to be rather limited. As our

study was limited to countries with sufficiently long time series data, other countries

that are affected strongly by the pandemic, such as Italy, are missing, which limits our

conclusions to the countries analyzed here. The excess mortalities quantified here are

not representative globally. The regional variations are at least partly explained by the

differing courses of the epidemic as well as by the different NPIs that were imple-

mented nationally or regionally during the study period (Ritchie et al., 2020). Thus, it is

difficult to quantify the actual attributions of COVID-19 infections to the overall popu-

lation mortality risks (Chaudry, Dranitsaris, Mubashir, Bartoszko, & Riazi, 2020;

Hadjidemetriou, Sasidharan, Kouyialis, & Parlikad, 2020). According to IHME (2021),

six different drivers influence excess mortality estimates. In addition to direct COVID-

19 deaths, additional deaths caused by an overburdened health care system or mental

health disorders may appear. On the other hand, the mobility and contact restrictions

discussed earlier might have lowered the mortality that was due to traffic accidents and

other infectious diseases. Finally, the deaths of frail individuals may have been moved

forward, since these individuals, who would have died later due to their chronic condi-

tions, have died earlier because of COVID-19. These cases would then be associated

with a temporal spike in mortality and eventual death numbers that were below expec-

tations. While we discussed some of these points qualitatively in our paper, our data do
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not allow us to include these points in the model, as this would require detailed cause-

specific mortality data.

Mortality due to a specific disease can be addressed by the case fatality risk (CFR),

which is the risk of death after infection but, however, is quite vulnerable to bias in out-

breaks (Lipsitch et al., 2015). The international CFR estimates for COVID-19 are biased

due to the demographic characteristics of the cases, time lags between the reporting of

cases and deaths, underreporting of cases and deaths, and capacities of national health-

care systems, among other unobservable factors. Therefore, assessing the international

differences in mortality due to COVID-19 without accounting for these characteristics

and factors is inadvisable (Backhaus, 2020; Dudel et al., 2020; Vanella et al., 2021).

Our model only included temporal variables as predictors. The SARIMA models im-

plicitly include unobservable trends by estimating the stochasticity of the mortality

trends. However, in the baseline period, unobserved events are not included in the

model. Mortality trends are, among others, influenced by infection activity, which de-

pends on the contact rates among individuals (Kirkeby, Halasa, Gussmann, Toft, &

Græsbøll, 2017). Many countries, therefore, implemented interventions during the pan-

demic that aimed at contact restrictions. As we have not witnessed similar occurrences

in the past, we could not quantify the impacts of such measures in our model. We,

therefore, decided to provide rather qualitative results for the excess mortalities that

were observed in the study countries, along with the possible impact of contact restric-

tions. We purposely rejected reporting quantitative results on that, as we cannot do

that in a responsible, statistical manner. Future studies might further address this topic.

The classical Lee-Carter model and its extensions, which usually perform excep-

tionally well in mortality forecasting, might not be applicable in their pure forms

for the near future, as the long-term overall effect of COVID-19 on age-specific

mortality patterns and its summary measures, such as life expectancy at birth and

lifespan inequality, is yet unobserved. Therefore, the mortality trends derived from

historical mortality data might not be completely representative of future trends.

As we have not witnessed a similar pandemic in the near past, an adjustment fac-

tor to the classic Lee-Carter models could be appropriate, which would transform

them to Bayesian models. The additional information, e.g., the mortality changes

due to COVID-19, is difficult to assess; however, as the CFRs are biased, as has

been discussed, the actual prevalence of the disease among the population is un-

known. Many patients who experience only mild symptoms or are completely

asymptomatic (Istituto Superiore di Sanità, 2020) will not be detected (Mizumoto,

Kagaya, Zarebski, & Chowell, 2020). Moreover, the prevalence estimates are poten-

tially influenced by the variations in COVID-19 countermeasures that are intro-

duced by the different countries and even by subnational geographical units. By

examining the number of deaths in Spain, as illustrated in Figure 7, we observe

sharp mortality decreases after the peak in week 13, i.e., the last week of March.

In mid-March, Spain introduced national countermeasures to contain the spread of

the virus (Hogan Lovells Solutions, 2020), which presumably led to the mortality

decrease after calendar week 13 and by considering the time lag of up to 2 weeks

between the infection and death of a specific person (Vanella et al., 2021). As we

lack an experimental environment for individual measures, which would be needed

to estimate their effects on virus spread and mortality, the number of deaths that
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was prevented by countermeasures cannot be quantified. Our stochastic investiga-

tion illustrates the potential influence of pure stochasticity on the observed death

numbers, which indicates that a deterministic inspection of the reported death

numbers does not provide a reliable estimate of the impacts of COVID-19 counter-

measures but simply a qualitative orientation. Therefore, the available data do not

allow estimations of mortality levels under “normal circumstances”, i.e., if we had

no active contact reduction measures. Our COVID-19-adjusted estimates have

shown, however, that the excess mortality in calendar weeks 13 and 14 was excep-

tionally high, even after considering the reported COVID-19 deaths. This may be

associated either with contemporaneous external factors that are not associated

with the pandemic; to the indirect mortality effects of the pandemic, such as sur-

plus mortality through causes due to reduced healthcare capacities in overwhelmed

healthcare systems (Roberton et al., 2020); or due to bias in the COVID-19 death

numbers (Backhaus, 2020) during that time. After the implementation of COVID-

19 countermeasures in the study countries, our COVID-19 adjusted excess mortal-

ity estimates were temporarily significantly negative. The cause of this is unknown;

however, the direct effects of NPIs on other infectious diseases (including influ-

enza) as well as the indirect effects that decreased the disease burdens from other

causes of death, such as air pollution (Contini & Costabile, 2020) or accidents

(Shilling & Waetjen, 2020), are possible. Only cause-specific mortality estimates, in-

cluding excess mortalities, would shine light on these effects; however, the majority

of the countries included here do not provide causes of death in a sufficiently

timely manner to allow this. In principle, however, the model presented here would

allow stratification by death cause.

An experimental approach might adjust the mortality data to the prevalence rates of

active cases among the population. As these are not available for all countries by similar

measurements, i.e., in coherent demographic groups (Dudel et al., 2020), well-

considered methods for adjusting the available data need to be applied. Making adjust-

ments by using simulations derived from population-based seroprevalence studies

might be one solution. As this appears to exceed the scope of our investigation, we will

not elaborate on that further in this paper. Further studies could consider this, how-

ever, for mortality forecasting.

One final note regarding our methodology is that we rely on a mortality forecast

model, which produces PIs that increase with the forecast horizon. As such, employing

our model for a very long forecast horizon may hinder the detection of excess mortal-

ity. A 1-year forecast horizon, as we have employed in our paper, seems to be a bal-

anced choice.

Conclusions and outlook
The excess mortalities during an epidemic are commonly computed by using compari-

sons of observed death numbers or death rates to ex ante predictions of mortality.

Based on an extension of the Lee-Carter mortality model (Lee & Carter, 1992; Vanella,

2017), we introduced a framework for including not only the abovementioned autocor-

relations of the mortality time series and cross-correlations among the mortality

time series into the analysis but also consider the long-term trends in the time

series. We have considered these points in our model by using a combination of
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PCA, SARIMA models, and classic time series analysis. In particular, the inclu-

sion of cross-country mortality correlations in the model appears to be a crucial

aspect in times of pandemics due to the spread of the pathogen over inter-

national borders. We have covered the common mortality trends that are induced

by the spread of the virus within our PCA. Moreover, our approach provides an

efficient way to conduct multipopulation studies on mortality development. We

have illustrated how the methods, which are established in demographic forecast-

ing, can enrich the common epidemiological approaches that are employed in ex-

cess mortality studies. Our results identified significant differences in excess

mortality among different subpopulations and countries, which could be investi-

gated further. The detailed analysis of COVID-19-associated deaths against the

deaths due to other causes has shown that the mortality levels due to other

causes have been slightly below expectations in 2020 in our study countries. This

suggests a positive effect of NPIs in preventing deaths due to other causes as

well, not just COVID-19 related, and has been described in detail for other re-

spiratory infections, such as influenza (Fricke, Glöckner, Dreier, & Lange, 2021).

This, however, cannot be analyzed conclusively based on our available data.

Our application has illustrated the power of timely and detailed surveillance data on

mortality trends to inform health policies in a timely manner and provides scientific

support for decision-making. In addition to the case of all-cause mortality covered in

this article, our approach could be applied to cause-specific mortality data. This would

provide additional insights into the mortality patterns related to specific diseases, inde-

pendent of the outbreak of an epidemic.

Appendix C. Basics of cosine functions
A cosine function can be characterized by its amplitude A, its periodicity or frequency

F, and its phase angle P (Fuller, 1996):

f tð Þ ¼ Acos F�t þ Pð Þ

The simplest form of a cosine takes the values A = F = 1, P = 0. Graphically, this func-

tion can be illustrated as follows.

A period of π
26 will now stretch the curve horizontally by the reciprocal.

An amplitude of 1.34, as estimated by OLS in model 1 of our study, leads to a vertical

stretch in the curve, as illustrated in Figure 13.

Appendix D. Excess mortality estimates by demographic groups
Here, we report more detailed results that are generated by our model by demographic

groups for our 19 study countries for 2020. We observe distinct differences in excess

mortality between the age groups and two genders.

Both sexes and all age groups showed peaks in the number of deaths between weeks

12 and 17 and after calendar week 40 of 2020. However, a more detailed analysis shows

increases beyond the upper limits of the 95% PIs only for the very old age groups and

in spring 2020. For persons aged 75 and above, we observe a significant increase

in mortality for weeks 13–16. For the 65–74 age group, the increase was
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Appendix B. Time series numbering
Table 3 Order of time series used in the analysis
Number Country Sex Age group

1 Austria Male <65

2 Austria Male 65–74

3 Austria Male 75–84

4 Austria Male >84

5 Austria Female <65

6 Austria Female 65–74

7 Austria Female 75–84

8 Austria Female >84

9 Belgium Male <65

10 Belgium Male 65–74

11 Belgium Male 75–84

12 Belgium Male >84

13 Belgium Female <65

14 Belgium Female 65–74

15 Belgium Female 75–84

16 Belgium Female >84

17 Switzerland Male <65

18 Switzerland Male 65–74

19 Switzerland Male 75–84

20 Switzerland Male >84

21 Switzerland Female <65

22 Switzerland Female 65–74

23 Switzerland Female 75–84

24 Switzerland Female >84

25 Spain Male <65

26 Spain Male 65–74

27 Spain Male 75–84

28 Spain Male >84

29 Spain Female <65

30 Spain Female 65–74

31 Spain Female 75–84

32 Spain Female >84

33 Estonia Male <65

34 Estonia Male 65–74

35 Estonia Male 75–84

36 Estonia Male >84

37 Estonia Female <65

38 Estonia Female 65–74

39 Estonia Female 75–84

40 Estonia Female >84

41 Finland Male <65

42 Finland Male 65–74

43 Finland Male 75–84

44 Finland Male >84

45 Finland Female <65

46 Finland Female 65–74

47 Finland Female 75–84
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Table 3 Order of time series used in the analysis (Continued)
Number Country Sex Age group

48 Finland Female >84

49 France Male <65

50 France Male 65–74

51 France Male 75–84

52 France Male >84

53 France Female <65

54 France Female 65–74

55 France Female 75–84

56 France Female >84

57 Scotland Male <65

58 Scotland Male 65–74

59 Scotland Male 75–84

60 Scotland Male >84

61 Scotland Female <65

62 Scotland Female 65–74

63 Scotland Female 75–84

64 Scotland Female >84

65 Hungary Male <65

66 Hungary Male 65–74

67 Hungary Male 75–84

68 Hungary Male >84

69 Hungary Female <65

70 Hungary Female 65–74

71 Hungary Female 75–84

72 Hungary Female >84

73 Israel Male <65

74 Israel Male 65–74

75 Israel Male 75–84

76 Israel Male >84

77 Israel Female <65

78 Israel Female 65–74

79 Israel Female 75–84

80 Israel Female >84

81 Lithuania Male <65

82 Lithuania Male 65–74

83 Lithuania Male 75–84

84 Lithuania Male >84

85 Lithuania Female <65

86 Lithuania Female 65–74

87 Lithuania Female 75–84

88 Lithuania Female >84

89 Latvia Male <65

90 Latvia Male 65–74

91 Latvia Male 75–84

92 Latvia Male >84

93 Latvia Female <65

94 Latvia Female 65–74

95 Latvia Female 75–84
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Table 3 Order of time series used in the analysis (Continued)
Number Country Sex Age group

96 Latvia Female >84

97 Netherlands Male <65

98 Netherlands Male 65–74

99 Netherlands Male 75–84

100 Netherlands Male >84

101 Netherlands Female <65

102 Netherlands Female 65–74

103 Netherlands Female 75–84

104 Netherlands Female >84

105 Norway Male <65

106 Norway Male 65–74

107 Norway Male 75–84

108 Norway Male >84

109 Norway Female <65

110 Norway Female 65–74

111 Norway Female 75–84

112 Norway Female >84

113 Poland Male <65

114 Poland Male 65–74

115 Poland Male 75–84

116 Poland Male >84

117 Poland Female <65

118 Poland Female 65–74

119 Poland Female 75–84

120 Poland Female >84

121 Portugal Male <65

122 Portugal Male 65–74

123 Portugal Male 75–84

124 Portugal Male >84

125 Portugal Female <65

126 Portugal Female 65–74

127 Portugal Female 75–84

128 Portugal Female >84

129 Slovakia Male <65

130 Slovakia Male 65–74

131 Slovakia Male 75–84

132 Slovakia Male >84

133 Slovakia Female <65

134 Slovakia Female 65–74

135 Slovakia Female 75–84

136 Slovakia Female >84

137 Slovenia Male <65

138 Slovenia Male 65–74

139 Slovenia Male 75–84

140 Slovenia Male >84

141 Slovenia Female <65

142 Slovenia Female 65–74

143 Slovenia Female 75–84
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statistically significant for males only. The mortality increases for persons below

age 65 since the COVID-19 crisis are not statistically significant for either sex.

Appendix E. Detailed model results for Spain
For illustrative purposes, we show the complete results for one of the countries

that were analyzed in our study. Figures 16 and 17 show the observed and pre-

dicted weekly deaths by age group and sex in Spain in 2020. Statistically significant

excess mortality is observable in all panels.

Abbreviations
AIC: Akaike’s information criterion; ARIMA: Autoregressive integrated moving average; BIC: Bayesian information
criterion; CDC: Centers for Disease Control and Prevention; CFR: Case fatality risk; CI: Confidence interval; cos: Cosine;
DOHMH: New York City Department of Health and Mental Hygiene; ECDC: European Centre for Disease Prevention
and Control; e.g.: Exempli gratia; EUROMOMO: European mortality monitoring; exp(x): Euler’s number to the power
of x; GLM: Generalized linear model; HMD: Human mortality database; i.e.: id est; IHME: Institute for Health Metrics and
Evaluation; λi: ith loading; μi, τ: ith logit mortality rate estimate for week τ; MCMC: Markov Chain Monte Carlo;
NPI: Nonpharmaceutical intervention; PC: Principal component; PCA: Principal component analysis; PI: Prediction

Table 3 Order of time series used in the analysis (Continued)
Number Country Sex Age group

144 Slovenia Female >84

145 Sweden Male <65

146 Sweden Male 65–74

147 Sweden Male 75–84

148 Sweden Male >84

149 Sweden Female <65

150 Sweden Female 65–74

151 Sweden Female 75–84

152 Sweden Female >84

Fig. 11 Cosine function with amplitude 1 and period 2π
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Fig. 12 Cosine with amplitude 1 and period 52

Fig. 13 Cosine function with amplitude 1.34 and period 52
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Fig. 14 Observed and predicted weekly sex-specific deaths in 2020 for the 19 study countries and by age
group below 75 years, Sources: Human Mortality Database (2021); Own computation and design
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Fig. 15 Observed and predicted weekly sex-specific deaths in 2020 for the 19 study countries and by age
group above 74 years. Sources: Human Mortality Database (2021); Own computation and design
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Fig. 16 Observed and predicted weekly death numbers in 2020 in Spain by sex and age below 75 years of
age. Sources: Human Mortality Database (2021); Computations and design by the authors
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Fig. 17 Observed and predicted weekly death numbers in 2020 in Spain by sex and age above 74 years of
age. Sources: Human Mortality Database (2021); Computations and design by the authors
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interval; Πt: Simulation matrix of the PCs in period t; SARIMA: Seasonal autoregressive integrated moving average;
US: United States of America; w: Week; WASCSMR: Weekly age-, sex-, and country-specific mortality rate
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