Argentieri, M. A., Nagarajan, S., Seddighzadeh, B., Baccarelli, A. A., & Shields, A. E. (2017). Epigenetic pathways in human disease: The impact of DNA methylation on stress-related pathogenesis and current challenges in biomarker development. eBioMedicine, 18, 327–350. https://doi.org/10.1016/j.ebiom.2017.03.044
Article
Google Scholar
Austad, S. N., & Fischer, K. E. (2016). Sex differences in lifespan. Cell Metabolism, 23(6), 1022–1033. https://doi.org/10.1016/j.cmet.2016.05.019
Article
Google Scholar
Bajic, V., Mandusic, V., Stefanova, E., Bozovic, A., Davidovic, R., Zivkovic, L., Cabarkapa, A., & Spremo-Potparevic, B. (2015). Skewed X-chromosome inactivation in women affected by Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD, 43(4), Article 4. https://doi.org/10.3233/JAD-141674
Article
Google Scholar
Baudisch, A., & Vaupel, J. W. (2012). Getting to the root of aging. Science, 338(6107), 618–619. https://doi.org/10.1126/science.1226467
Article
Google Scholar
Beekman, M., Blanché, H., Perola, M., Hervonen, A., Bezrukov, V., Sikora, E., Flachsbart, F., Christiansen, L., De Craen, A. J. M., Kirkwood, T. B. L., Rea, I. M., Poulain, M., Robine, J.-M., Valensin, S., Stazi, M. A., Passarino, G., Deiana, L., Gonos, E. S., Paternoster, L., et al., & GEHA consortium. (2013). Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study. Aging Cell, 12(2), 184–193. https://doi.org/10.1111/acel.12039
Blagosklonny, M. V. (2010). Why the disposable soma theory cannot explain why women live longer and why we age. Aging, 2(12), 884–887. https://doi.org/10.18632/aging.100253
Article
Google Scholar
Blagosklonny, M. V., & Hall, M. N. (2009). Growth and aging: A common molecular mechanism. Aging, 1(4), 357–362. https://doi.org/10.18632/aging.100040
Article
Google Scholar
Bonafè, M., Olivieri, F., Cavallone, L., Giovagnetti, S., Mayegiani, F., Cardelli, M., Pieri, C., Marra, M., Antonicelli, R., Lisa, R., Rizzo, M. R., Paolisso, G., Monti, D., & Franceschi, C. (2001). A gender-dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. European Journal of Immunology, 31(8), 2357–2361. https://doi.org/10.1002/1521-4141(200108)31:8%3c2357::aid-immu2357%3e3.0.co;2-x
Article
Google Scholar
Bronikowski, A. M., Meisel, R. P., Biga, P. R., Walters, J. R., Mank, J. E., Larschan, E., Wilkinson, G. S., Valenzuela, N., Conard, A. M., Magalhães, J. P., Duan, J. E., Elias, A. E., Gamble, T., Graze, R. M., Gribble, K. E., Kreiling, J. A., & Riddle, N. C. (2022). Sex-specific aging in animals: Perspective and future directions. Aging Cell. https://doi.org/10.1111/acel.13542
Article
Google Scholar
Camus, M. F., Wolf, J. B. W., Morrow, E. H., & Dowling, D. K. (2015). Single nucleotides in the mtDNA sequence modify mitochondrial molecular function and are associated with sex-specific effects on fertility and aging. Current Biology, 25(20), 2717–2722. https://doi.org/10.1016/j.cub.2015.09.012
Article
Google Scholar
Cavalli, G., & Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Nature, 571(7766), 489–499. https://doi.org/10.1038/s41586-019-1411-0
Article
Google Scholar
Clutton-Brock, T. H., & Isvaran, K. (2007). Sex differences in ageing in natural populations of vertebrates. Proceedings of the Royal Society b: Biological Sciences, 274(1629), 3097–3104. https://doi.org/10.1098/rspb.2007.1138
Article
Google Scholar
Colchero, F., Rau, R., Jones, O. R., Barthold, J. A., Conde, D. A., Lenart, A., Nemeth, L., Scheuerlein, A., Schoeley, J., Torres, C., Zarulli, V., Altmann, J., Brockman, D. K., Bronikowski, A. M., Fedigan, L. M., Pusey, A. E., Stoinski, T. S., Strier, K. B., Baudisch, A., et al. (2016). The emergence of longevous populations. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1612191113
Article
Google Scholar
Davis, E. J., Lobach, I., & Dubal, D. B. (2019). Female XX sex chromosomes increase survival and extend lifespan in aging mice. Aging Cell, 18(1), Article 1. https://doi.org/10.1111/acel.12871
Article
Google Scholar
Doblhammer, G., & Oeppen, J. (2003). Reproduction and longevity among the British peerage: The effect of frailty and health selection. Proceedings of the Royal Society of London Series b: Biological Sciences, 270(1524), 1541–1547. https://doi.org/10.1098/rspb.2003.2400
Article
Google Scholar
Dor, Y., & Cedar, H. (2018). Principles of DNA methylation and their implications for biology and medicine. The Lancet, 392(10149), 777–786. https://doi.org/10.1016/S0140-6736(18)31268-6
Article
Google Scholar
Dumanski, J. P., Lambert, J.-C., Rasi, C., Giedraitis, V., Davies, H., Grenier-Boley, B., Lindgren, C. M., Campion, D., Dufouil, C., European Alzheimer’s Disease Initiative Investigators, Pasquier, F., Amouyel, P., Lannfelt, L., Ingelsson, M., Kilander, L., Lind, L., & Forsberg, L. A. (2016). Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. American Journal of Human Genetics, 98(6), Article 6. https://doi.org/10.1016/j.ajhg.2016.05.014
Edward, D. A., & Chapman, T. (2011). Mechanisms underlying reproductive trade-offs: Costs of reproduction. In T. Flatt & A. Heyland (Eds.), Mechanisms of life history evolution (pp. 137–152). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199568765.003.0011
Chapter
Google Scholar
Fiorito, G., Polidoro, S., Dugué, P.-A., Kivimaki, M., Ponzi, E., Matullo, G., Guarrera, S., Assumma, M. B., Georgiadis, P., Kyrtopoulos, S. A., Krogh, V., Palli, D., Panico, S., Sacerdote, C., Tumino, R., Chadeau-Hyam, M., Stringhini, S., Severi, G., Hodge, A. M., et al. (2017). Social adversity and epigenetic aging: A multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-16391-5
Article
Google Scholar
Forsberg, L. A. (2017). Loss of chromosome Y (LOY) in blood cells is associated with increased risk for disease and mortality in aging men. Human Genetics, 136(5), Article 5. https://doi.org/10.1007/s00439-017-1799-2
Article
Google Scholar
Forsberg, L. A., Rasi, C., Malmqvist, N., Davies, H., Pasupulati, S., Pakalapati, G., Sandgren, J., Diaz de Ståhl, T., Zaghlool, A., Giedraitis, V., Lannfelt, L., Score, J., Cross, N. C. P., Absher, D., Janson, E. T., Lindgren, C. M., Morris, A. P., Ingelsson, E., Lind, L., & Dumanski, J. P. (2014). Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nature Genetics, 46(6), Article 6. https://doi.org/10.1038/ng.2966
Article
Google Scholar
Fraser, A., Johnman, C., Whitley, E., & Alvergne, A. (2020). The evolutionary ecology of age at natural menopause: Implications for public health. Evolutionary Human Sciences, 2, e57. https://doi.org/10.1017/ehs.2020.59
Article
Google Scholar
Gavrilov, L. A., & Gavrilova, N. S. (1999). Is there a reproductive cost for human longevity? Journal of Anti-Aging Medicine, 2(2), 121–123. https://doi.org/10.1089/rej.1.1999.2.121
Article
Google Scholar
Gensous, N., Garagnani, P., Santoro, A., Giuliani, C., Ostan, R., Fabbri, C., Milazzo, M., Gentilini, D., di Blasio, A. M., Pietruszka, B., Madej, D., Bialecka-Debek, A., Brzozowska, A., Franceschi, C., & Bacalini, M. G. (2020). One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: A pilot study from the NU-AGE project. GeroScience. https://doi.org/10.1007/s11357-019-00149-0
Article
Google Scholar
Gentilini, D., Castaldi, D., Mari, D., Monti, D., Franceschi, C., Di Blasio, A. M., & Vitale, G. (2012). Age-dependent skewing of X chromosome inactivation appears delayed in centenarians’ offspring. Is there a role for allelic imbalance in healthy aging and longevity? Aging Cell, 11(2), Article 2. https://doi.org/10.1111/j.1474-9726.2012.00790.x
Article
Google Scholar
Ghalambor, C. K., & Martin, T. E. (2001). Fecundity-survival trade-offs and parental risk-taking in birds. Science, 292(5516), 494–497. https://doi.org/10.1126/science.1059379
Article
Google Scholar
Gluckman, P. D. (2012). Epigenetics, the life-course and metabolic disease. Nature Reviews Endocrinology, 8(2), 74–76. https://doi.org/10.1038/nrendo.2011.226
Article
Google Scholar
Hägg, S., & Jylhävä, J. (2021). Sex differences in biological aging with a focus on human studies. eLife, 10, e63425. https://doi.org/10.7554/eLife.63425
Article
Google Scholar
Hall, E., Volkov, P., Dayeh, T., Esguerra, J. L. S., Salö, S., Eliasson, L., Rönn, T., Bacos, K., & Ling, C. (2014). Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biology, 15(12), 522. https://doi.org/10.1186/s13059-014-0522-z
Article
Google Scholar
Harper, J. A., Janicke, T., & Morrow, E. H. (2021). Systematic review reveals multiple sexually antagonistic polymorphisms affecting human disease and complex traits. Evolution, 75(12), 3087–3097. https://doi.org/10.1111/evo.14394
Article
Google Scholar
Hidaka, B. H., & Boddy, A. M. (2016). Is estrogen receptor negative breast cancer risk associated with a fast life history strategy? Evolution, Medicine, and Public Health, 2016(1), 17–20. https://doi.org/10.1093/emph/eov034
Article
Google Scholar
Horvath, S., Gurven, M., Levine, M. E., Trumble, B. C., Kaplan, H., Allayee, H., Ritz, B. R., Chen, B., Lu, A. T., Rickabaugh, T. M., Jamieson, B. D., Sun, D., Li, S., Chen, W., Quintana-Murci, L., Fagny, M., Kobor, M. S., Tsao, P. S., Reiner, A. P., et al. (2016). An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biology, 17(1), 171. https://doi.org/10.1186/s13059-016-1030-0
Article
Google Scholar
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371–384. https://doi.org/10.1038/s41576-018-0004-3
Article
Google Scholar
Hutchison, C. A., Newbold, J. E., Potter, S. S., & Edgell, M. H. (1974). Maternal inheritance of mammalian mitochondrial DNA. Nature, 251(5475), 536–538. https://doi.org/10.1038/251536a0
Article
Google Scholar
Inoshita, M., Numata, S., Tajima, A., Kinoshita, M., Umehara, H., Yamamori, H., Hashimoto, R., Imoto, I., & Ohmori, T. (2015). Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions. Biology of Sex Differences, 6(1), 11. https://doi.org/10.1186/s13293-015-0029-7
Article
Google Scholar
Jasienska, G., Bribiescas, R. G., Furberg, A.-S., Helle, S., & Núñez-de la Mora, A. (2017). Human reproduction and health: An evolutionary perspective. The Lancet, 390(10093), 510–520. https://doi.org/10.1016/S0140-6736(17)30573-1
Article
Google Scholar
Joshi, P. K., Fischer, K., Schraut, K. E., Campbell, H., Esko, T., & Wilson, J. F. (2016). Variants near CHRNA3/5 and APOE have age- and sex-related effects on human lifespan. Nature Communications, 7, 11174. https://doi.org/10.1038/ncomms11174
Article
Google Scholar
Kananen, L., & Marttila, S. (2021). Ageing-associated changes in DNA methylation in X and Y chromosomes. Epigenetics & Chromatin, 14(1), 33. https://doi.org/10.1186/s13072-021-00407-6
Article
Google Scholar
Kankaanpää, A., Tolvanen, A., Saikkonen, P., Heikkinen, A., Laakkonen, E. K., Kaprio, J., Ollikainen, M., & Sillanpää, E. (2021). Do epigenetic clocks provide explanations for sex differences in lifespan? A cross-sectional twin study. The Journals of Gerontology. Series a, Biological Sciences and Medical Sciences. https://doi.org/10.1093/gerona/glab337
Article
Google Scholar
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270(5635), 301–304. https://doi.org/10.1038/270301a0
Article
Google Scholar
Kirkwood, T. B., & Rose, M. R. (1991). Evolution of senescence: Late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 332(1262), 15–24. https://doi.org/10.1098/rstb.1991.0028
Article
Google Scholar
Kresovich, J. K., Harmon, Q. E., Xu, Z., Nichols, H. B., Sandler, D. P., & Taylor, J. A. (2019). Reproduction, DNA methylation and biological age. Human Reproduction, 34(10), 1965–1973. https://doi.org/10.1093/humrep/dez149
Article
Google Scholar
Laaksonen, J., Mishra, P. P., Seppälä, I., Lyytikäinen, L.-P., Raitoharju, E., Mononen, N., Lepistö, M., Almusa, H., Ellonen, P., Hutri-Kähönen, N., Juonala, M., Raitakari, O., Kähönen, M., Salonen, J. T., & Lehtimäki, T. (2021). Examining the effect of mitochondrial DNA variants on blood pressure in two Finnish cohorts. Scientific Reports, 11(1), 611. https://doi.org/10.1038/s41598-020-79931-6
Article
Google Scholar
Laaksonen, J., Seppälä, I., Raitoharju, E., Mononen, N., Lyytikäinen, L.-P., Waldenberger, M., Illig, T., Lepistö, M., Almusa, H., Ellonen, P., Hutri-Kähönen, N., Juonala, M., Kähönen, M., Raitakari, O., Salonen, J. T., & Lehtimäki, T. (2019). Discovery of mitochondrial DNA variants associated with genome-wide blood cell gene expression: A population-based mtDNA sequencing study. Human Molecular Genetics, 28(8), 1381–1391. https://doi.org/10.1093/hmg/ddz011
Article
Google Scholar
Lagou, V., Mägi, R., Hottenga, J.-J., Grallert, H., Perry, J. R. B., Bouatia-Naji, N., Marullo, L., Rybin, D., Jansen, R., Min, J. L., Dimas, A. S., Ulrich, A., Zudina, L., Gådin, J. R., Jiang, L., Faggian, A., Bonnefond, A., Fadista, J., Stathopoulou, M. G., et al. & Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC). (2021). Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 12(1), 24. https://doi.org/10.1038/s41467-020-19366-9
Lemaitre, J.-F., Berger, V., Bonenfant, C., Douhard, M., Gamelon, M., Plard, F., & Gaillard, J.-M. (2015). Early-late life trade-offs and the evolution of ageing in the wild. Proceedings of the Royal Society B: Biological Sciences, 282(1806), 20150209–20150209. https://doi.org/10.1098/rspb.2015.0209
Article
Google Scholar
Lemaître, J.-F., Ronget, V., Tidière, M., Allainé, D., Berger, V., Cohas, A., Colchero, F., Conde, D. A., Garratt, M., Liker, A., Marais, G. A. B., Scheuerlein, A., Székely, T., & Gaillard, J.-M. (2020). Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proceedings of the National Academy of Sciences, 117(15), 8546–8553. https://doi.org/10.1073/pnas.1911999117
Article
Google Scholar
Leung, Y.-K., Ouyang, B., Niu, L., Xie, C., Ying, J., Medvedovic, M., Chen, A., Weihe, P., Valvi, D., Grandjean, P., & Ho, S.-M. (2018). Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics, 13(3), Article 3. https://doi.org/10.1080/15592294.2018.1445901
Article
Google Scholar
Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging, 10(4), 573–591. https://doi.org/10.18632/aging.101414
Article
Google Scholar
Li, S., Lund, J. B., Christensen, K., Baumbach, J., Mengel-From, J., Kruse, T., Li, W., Mohammadnejad, A., Pattie, A., Marioni, R. E., Deary, I. J., & Tan, Q. (2020a). Exploratory analysis of age and sex dependent DNA methylation patterns on the X-chromosome in whole blood samples. Genome Medicine, 12(1), 39. https://doi.org/10.1186/s13073-020-00736-3
Article
Google Scholar
Li, X., Ploner, A., Wang, Y., Magnusson, P. K., Reynolds, C., Finkel, D., Pedersen, N. L., Jylhävä, J., & Hägg, S. (2020b). Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife, 9, e51507. https://doi.org/10.7554/eLife.51507
Article
Google Scholar
Li, G., Wang, C., Guan, X., Bai, Y., Feng, Y., Wei, W., Meng, H., Fu, M., He, M., Zhang, X., Lu, Y., Lin, Y., & Guo, H. (2022). Age-related DNA methylation on Y chromosome and their associations with total mortality among Chinese males. Aging Cell. https://doi.org/10.1111/acel.13563
Article
Google Scholar
Libert, C., Dejager, L., & Pinheiro, I. (2010). The X chromosome in immune functions: When a chromosome makes the difference. Nature Reviews. Immunology, 10(8), Article 8. https://doi.org/10.1038/nri2815
Article
Google Scholar
Liu, X., Song, Z., Li, Y., Yao, Y., Fang, M., Bai, C., An, P., Chen, H., Chen, Z., Tang, B., Shen, J., Gao, X., Zhang, M., Chen, P., Zhang, T., Jia, H., Liu, X., Hou, Y., Yang, H., et al. (2021). Integrated genetic analyses revealed novel human longevity loci and reduced risks of multiple diseases in a cohort study of 15,651 Chinese individuals. Aging Cell. https://doi.org/10.1111/acel.13323
Article
Google Scholar
Lund, J. B., Li, S., Christensen, K., Mengel-From, J., Soerensen, M., Marioni, R. E., Starr, J., Pattie, A., Deary, I. J., Baumbach, J., & Tan, Q. (2020). Age-dependent DNA methylation patterns on the Y chromosome in elderly males. Aging Cell. https://doi.org/10.1111/acel.12907
Article
Google Scholar
Luy, M. (2003). Causes of male excess mortality: insights from cloistered populations. Population and Development Review, 29(4), 647–676. https://doi.org/10.1111/j.1728-4457.2003.00647.x
Article
Google Scholar
Machiela, M. J., Zhou, W., Karlins, E., Sampson, J. N., Freedman, N. D., Yang, Q., Hicks, B., Dagnall, C., Hautman, C., Jacobs, K. B., Abnet, C. C., Aldrich, M. C., Amos, C., Amundadottir, L. T., Arslan, A. A., Beane-Freeman, L. E., Berndt, S. I., Black, A., Blot, W. J., et al. (2016). Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 7, 11843. https://doi.org/10.1038/ncomms11843
Article
Google Scholar
Marais, G. A. B., Gaillard, J.-M., Vieira, C., Plotton, I., Sanlaville, D., Gueyffier, F., & Lemaitre, J.-F. (2018). Sex gap in aging and longevity: Can sex chromosomes play a role? Biology of Sex Differences. https://doi.org/10.1186/s13293-018-0181-y
Article
Google Scholar
Martin, E. M., & Fry, R. C. (2018). Environmental influences on the epigenome: Exposure-associated DNA methylation in human populations. Annual Review of Public Health, 39(1), 309–333. https://doi.org/10.1146/annurev-publhealth-040617-014629
Article
Google Scholar
Maschietto, M., Bastos, L. C., Tahira, A. C., Bastos, E. P., Euclydes, V. L. V., Brentani, A., Fink, G., de Baumont, A., Felipe-Silva, A., Francisco, R. P. V., Gouveia, G., Grisi, S. J. F. E., Escobar, A. M. U., Moreira-Filho, C. A., Polanczyk, G. V., Miguel, E. C., & Brentani, H. (2017). Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases. Scientific Reports, 7, 44547. https://doi.org/10.1038/srep44547
Article
Google Scholar
Masser, D. R., Hadad, N., Porter, H. L., Mangold, C. A., Unnikrishnan, A., Ford, M. M., Giles, C. B., Georgescu, C., Dozmorov, M. G., Wren, J. D., Richardson, A., Stanford, D. R., & Freeman, W. M. (2017). Sexually divergent DNA methylation patterns with hippocampal aging. Aging Cell, 16(6), Article 6. https://doi.org/10.1111/acel.12681
Article
Google Scholar
Matarrese, P., Tieri, P., Anticoli, S., Ascione, B., Conte, M., Franceschi, C., Malorni, W., Salvioli, S., & Ruggieri, A. (2019). X-chromosome-linked miR548am-5p is a key regulator of sex disparity in the susceptibility to mitochondria-mediated apoptosis. Cell Death & Disease, 10(9), Article 9. https://doi.org/10.1038/s41419-019-1888-3
Article
Google Scholar
McCartney, D. L., Zhang, F., Hillary, R. F., Zhang, Q., Stevenson, A. J., Walker, R. M., Bermingham, M. L., Boutin, T., Morris, S. W., Campbell, A., Murray, A. D., Whalley, H. C., Porteous, D. J., Hayward, C., Evans, K. L., Chandra, T., Deary, I. J., McIntosh, A. M., Yang, J., et al. (2019). An epigenome-wide association study of sex-specific chronological ageing. Genome Medicine, 12(1), Article 1. https://doi.org/10.1186/s13073-019-0693-z
Article
Google Scholar
McCartney, D. L., Zhang, F., Hillary, R. F., Zhang, Q., Stevenson, A. J., Walker, R. M., Bermingham, M. L., Boutin, T., Morris, S. W., Campbell, A., Murray, A. D., Whalley, H. C., Porteous, D. J., Hayward, C., Evans, K. L., Chandra, T., Deary, I. J., McIntosh, A. M., Yang, J., et al. (2020). An epigenome-wide association study of sex-specific chronological ageing. Genome Medicine, 12(1), 1. https://doi.org/10.1186/s13073-019-0693-z
Article
Google Scholar
Migliore, L., Nicolì, V., & Stoccoro, A. (2021). Gender specific differences in disease susceptibility: The role of epigenetics. Biomedicines, 9(6), 652. https://doi.org/10.3390/biomedicines9060652
Article
Google Scholar
Milot, E., Moreau, C., Gagnon, A., Cohen, A. A., Brais, B., & Labuda, D. (2017). Mother’s curse neutralizes natural selection against a human genetic disease over three centuries. Nature Ecology & Evolution, 1(9), 1400–1406. https://doi.org/10.1038/s41559-017-0276-6
Article
Google Scholar
Nettle, D. (2010). Dying young and living fast: Variation in life history across English neighborhoods. Behavioral Ecology, 21(2), 387–395. https://doi.org/10.1093/beheco/arp202
Article
Google Scholar
Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., & Boks, M. P. (2021). A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Research Reviews, 69, 101348. https://doi.org/10.1016/j.arr.2021.101348
Article
Google Scholar
Partridge, L., Gems, D., & Withers, D. J. (2005). Sex and death: What is the connection? Cell, 120(4), 461–472. https://doi.org/10.1016/j.cell.2005.01.026
Article
Google Scholar
Pellegrini, C., Pirazzini, C., Sala, C., Sambati, L., Yusipov, I., Kalyakulina, A., Ravaioli, F., Kwiatkowska, K. M., Durso, D. F., Ivanchenko, M., Monti, D., Lodi, R., Franceschi, C., Cortelli, P., Garagnani, P., & Bacalini, M. G. (2021). A meta-analysis of brain DNA methylation across sex, age, and Alzheimer’s disease points for accelerated epigenetic aging in neurodegeneration. Frontiers in Aging Neuroscience, 13, 639428. https://doi.org/10.3389/fnagi.2021.639428
Article
Google Scholar
Penn, D. J., & Smith, K. R. (2007). Differential fitness costs of reproduction between the sexes. Proceedings of the National Academy of Sciences, 104(2), 553–558. https://doi.org/10.1073/pnas.0609301103
Article
Google Scholar
Persani, L., Bonomi, M., Lleo, A., Pasini, S., Civardi, F., Bianchi, I., Campi, I., Finelli, P., Miozzo, M., Castronovo, C., Sirchia, S., Gershwin, M. E., & Invernizzi, P. (2012). Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. Journal of Autoimmunity, 38(2–3), Article 2-3. https://doi.org/10.1016/j.jaut.2011.11.011
Article
Google Scholar
Perzel Mandell, K. A., Price, A. J., Wilton, R., Collado-Torres, L., Tao, R., Eagles, N. J., Szalay, A. S., Hyde, T. M., Weinberger, D. R., Kleinman, J. E., & Jaffe, A. E. (2021). Characterizing the dynamic and functional DNA methylation landscape in the developing human cortex. Epigenetics, 16(1), 1–13. https://doi.org/10.1080/15592294.2020.1786304
Article
Google Scholar
Quinlan, R. J. (2007). Human parental effort and environmental risk. Proceedings of the Royal Society b: Biological Sciences, 274(1606), 121–125. https://doi.org/10.1098/rspb.2006.3690
Article
Google Scholar
Rice, W. R. (1984). Sex chromosomes and the evolution of sexual dimorphism. Evolution, 38(4), 735. https://doi.org/10.2307/2408385
Article
Google Scholar
Ruzicka, F., & Connallon, T. (2020). Is the X chromosome a hot spot for sexually antagonistic polymorphisms? Biases in current empirical tests of classical theory. Proceedings of the Royal Society b: Biological Sciences, 287(1937), 20201869. https://doi.org/10.1098/rspb.2020.1869
Article
Google Scholar
Ryan, C. P., Hayes, M. G., Lee, N. R., McDade, T. W., Jones, M. J., Kobor, M. S., Kuzawa, C. W., & Eisenberg, D. T. A. (2018). Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Scientific Reports, 8(1), 11100. https://doi.org/10.1038/s41598-018-29486-4
Article
Google Scholar
Ryan, J., Wrigglesworth, J., Loong, J., Fransquet, P. D., & Woods, R. L. (2020). A systematic review and meta-analysis of environmental, lifestyle, and health factors associated with DNA methylation age. The Journals of Gerontology: Series A, 75(3), 481–494. https://doi.org/10.1093/gerona/glz099
Article
Google Scholar
Sainz, J., Rudolph, A., Hoffmeister, M., Frank, B., Brenner, H., Chang-Claude, J., Hemminki, K., & Försti, A. (2012). Effect of type 2 diabetes predisposing genetic variants on colorectal cancer risk. The Journal of Clinical Endocrinology & Metabolism, 97(5), E845–E851. https://doi.org/10.1210/jc.2011-2565
Article
Google Scholar
Salinari, G., De Santis, G., Zarulli, V., Giuliani, C., Franceschi, C., & Breschi, M. (2022). Fertility decline and the emergence of excess female survival in post-reproductive ages in Italy. Genus, 78(1), 19. https://doi.org/10.1186/s41118-022-00166-6
Article
Google Scholar
Sharp, A., Robinson, D., & Jacobs, P. (2000). Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Human Genetics, 107(4), Article 4. https://doi.org/10.1007/s004390000382
Article
Google Scholar
Singmann, P., Shem-Tov, D., Wahl, S., Grallert, H., Fiorito, G., Shin, S.-Y., Schramm, K., Wolf, P., Kunze, S., Baran, Y., Guarrera, S., Vineis, P., Krogh, V., Panico, S., Tumino, R., Kretschmer, A., Gieger, C., Peters, A., Prokisch, H., et al. (2015). Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics & Chromatin, 8(1), 43. https://doi.org/10.1186/s13072-015-0035-3
Article
Google Scholar
Spiers, H., Hannon, E., Schalkwyk, L. C., Smith, R., Wong, C. C. Y., O’Donovan, M. C., Bray, N. J., & Mill, J. (2015). Methylomic trajectories across human fetal brain development. Genome Research, 25(3), Article 3. https://doi.org/10.1101/gr.180273.114
Article
Google Scholar
Stearns, S. C., Ackermann, M., Doebeli, M., & Kaiser, M. (2000). Experimental evolution of aging, growth, and reproduction in fruitflies. Proceedings of the National Academy of Sciences, 97(7), 3309–3313. https://doi.org/10.1073/pnas.97.7.3309
Article
Google Scholar
Sugrue, V. J., Zoller, J. A., Narayan, P., Lu, A. T., Ortega-Recalde, O. J., Grant, M. J., Bawden, C. S., Rudiger, S. R., Haghani, A., Bond, D. M., Hore, R. R., Garratt, M., Sears, K. E., Wang, N., Yang, X. W., Snell, R. G., Hore, T. A., & Horvath, S. (2021). Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci. eLife, 10, e64932. https://doi.org/10.7554/eLife.64932
Article
Google Scholar
Tobi, E. W., van den Heuvel, J., Zwaan, B. J., Lumey, L. H., Heijmans, B. T., & Uller, T. (2018). Selective survival of embryos can explain DNA methylation signatures of adverse prenatal environments. Cell Reports, 25(10), 2660-2667.e4. https://doi.org/10.1016/j.celrep.2018.11.023
Article
Google Scholar
Trivers, R. (1985). Social evolution. Benjamin/Cummings Pub, Co.
Google Scholar
Tukiainen, T., Villani, A.-C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes, A., GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx (eGTEx) groups, … MacArthur, D. G. (2017). Landscape of X chromosome inactivation across human tissues. Nature, 550(7675), Article 7675. https://doi.org/10.1038/nature24265
Vidaki, A., González, D. M., Jiménez, B. P., & Kayser, M. (2021). Male-specific age estimation based on Y-chromosomal DNA methylation. Aging, 13(5), 6442–6458. https://doi.org/10.18632/aging.202775
Viña, J., Borrás, C., Gambini, J., Sastre, J., & Pallardó, F. V. (2005). Why females live longer than males: Control of longevity by sex hormones. Science of Aging Knowledge Environment. https://doi.org/10.1126/sageke.2005.23.pe17
Article
Google Scholar
Vukojevic, V., Kolassa, I.-T., Fastenrath, M., Gschwind, L., Spalek, K., Milnik, A., Heck, A., Vogler, C., Wilker, S., Demougin, P., Peter, F., Atucha, E., Stetak, A., Roozendaal, B., Elbert, T., Papassotiropoulos, A., & de Quervain, D.J.-F. (2014). Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. Journal of Neuroscience, 34(31), 10274–10284. https://doi.org/10.1523/JNEUROSCI.1526-14.2014
Article
Google Scholar
Westendorp, R. G. J., & Kirkwood, T. B. L. (1998). Human longevity at the cost of reproductive success. Nature, 396(6713), 743–746. https://doi.org/10.1038/25519
Article
Google Scholar
Xia, Y., Dai, R., Wang, K., Jiao, C., Zhang, C., Xu, Y., Li, H., Jing, X., Chen, Y., Jiang, Y., Kopp, R. F., Giase, G., Chen, C., & Liu, C. (2021). Sex-differential DNA methylation and associated regulation networks in human brain implicated in the sex-biased risks of psychiatric disorders. Molecular Psychiatry, 26(3), 835–848. https://doi.org/10.1038/s41380-019-0416-2
Article
Google Scholar
Yurov, Y. B., Vorsanova, S. G., Liehr, T., Kolotii, A. D., & Iourov, I. Y. (2014). X chromosome aneuploidy in the Alzheimer’s disease brain. Molecular Cytogenetics, 7(1), Article 1. https://doi.org/10.1186/1755-8166-7-20
Article
Google Scholar
Yusipov, I., Bacalini, M. G., Kalyakulina, A., Krivonosov, M., Pirazzini, C., Gensous, N., Ravaioli, F., Milazzo, M., Giuliani, C., Vedunova, M., Fiorito, G., Gagliardi, A., Polidoro, S., Garagnani, P., Ivanchenko, M., & Franceschi, C. (2020). Age-related DNA methylation changes are sex-specific: A comprehensive assessment. Aging, 12(23), 24057–24080.
Article
Google Scholar
Zarulli, V., Barthold Jones, J. A., Oksuzyan, A., Lindahl-Jacobsen, R., Christensen, K., & Vaupel, J. W. (2018). Women live longer than men even during severe famines and epidemics. Proceedings of the National Academy of Sciences, 115(4), E832–E840. https://doi.org/10.1073/pnas.1701535115
Article
Google Scholar
Zeng, Y., Nie, C., Min, J., Chen, H., Liu, X., Ye, R., Chen, Z., Bai, C., Xie, E., Yin, Z., Lv, Y., Lu, J., Li, J., Ni, T., Bolund, L., Land, K. C., Yashin, A., O’Rand, A. M., Sun, L., et al. (2018). Sex Differences in genetic associations with longevity. JAMA Network Open, 1(4), e181670. https://doi.org/10.1001/jamanetworkopen.2018.1670
Article
Google Scholar
Zhao, W., Ammous, F., Ratliff, S., Liu, J., Yu, M., Mosley, T. H., Kardia, S. L. R., & Smith, J. A. (2019). Education and lifestyle factors are associated with DNA methylation clocks in older African Americans. International Journal of Environmental Research and Public Health, 16(17), Article 17. https://doi.org/10.3390/ijerph16173141
Article
Google Scholar