Alho, J., & Spencer, B. D. (2005). Statistical demography and forecasting. Springer Science + Business Media, Inc
Armstrong, J. S. (2001). Principles of forecasting: a handbook for researchers and practitioners. Springer Science + Business Media
Basellini, U., & Camarda, C. G. (2016). Modeling and forecasting age at death distributions. Paper presented at the PAA Annual Meeting 2016, Washington, D.C., USA
Billari, F. C., Graziani, R., & Melilli, E. (2012). Stochastic population forecasts based on conditional expert opinions. Journal of the Royal Statistical Society, Series A, 175(2), 491–511.
Article
Google Scholar
Billari, F. C., Graziani, R., & Melilli, E. (2014). Stochastic population forecasting based on combinations of expert evaluations within the Bayesian paradigm. Demography, 51(5), 1933–1954.
Article
Google Scholar
Billari, F., Corsetti, G., Graziani, R., Marsili, M., Melilli, E. (2014b). Towards stochastic forecasts of the Italian population: an experiment with conditional expert elicitations. Proceedings of the Sixth Eurostat/UNECE Work Session on Demographic Projections, 326–338.
Bohk, C., & Rau, R. (2014). Mortality forecasts with a flexible age pattern of change for several European countries. Proceedings of the Sixth Eurostat/UNECE Work Session on Demographic Projections, 360–371.
Bohk, C., & Rau, R. (2016). Changing mortality patterns and their predictability: the case of the United States. In R. Schoen (Ed.), Dynamic Demographic Analysis. The Springer Series on Demographic Methods and Population Analysis, Volume 39, (pp. 69–89). Springer International Publishing Switzerland 2016.
Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting, 22(3), 547–581.
Article
Google Scholar
Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: a review of methods. Annals of Actuarial Science, 3(1–2), 3–43.
Article
Google Scholar
Booth, H., Hyndman, R. J., Tickle, L., & de Jong, P. (2006). Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions. Demographic Research, 15(9), 289–310.
Article
Google Scholar
Butt, Z., & Haberman, S. (2010a). A comparative study of parametric mortality projection models. Actuarial Research Paper No. 196. London, UK: Faculty of Actuarial Science and Insurance, City University London.
Butt, Z., & Haberman, S. (2010b). ilc: a collection of R functions for fitting a class of Lee-Carter mortality models using iterative fitting algorithms. Actuarial Research Paper No. 190, Cass Business School, Faculty of Actuarial Science and Insurance, London.
Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., & Khalaf-Allah, M. (2011). Bayesian stochastic mortality modelling for two populations. astin bulletin, 41(1), 29–59.
Google Scholar
Camarda, C. G. (2012). MortalitySmooth: an R package for smoothing poisson counts with P-splines. Journal of Statistical Software, 50(1), 1–24.
Article
Google Scholar
Carlin, B. P., & Louis, T. A. (2008). Bayesian methods for data analysis. Chapman & Hall/CRC
Christensen, K., Doblhammer, G., Rau, R., & Vaupel, J. W. (2009). Ageing populations: the challenges ahead. The Lancet, 374(9696), 1196–1208.
Article
Google Scholar
Christensen, K., Davidsen, M., Juel, K., Mortensen, L., Rau, R., & Vaupel, J. W. (2010). The divergent life-expectancy trends in Denmark and Sweden—and some potential explanations. In E. M. Crimmins, S. H. Preston, & B. Cohen (Eds.), International differences in mortality at older ages: dimensions and sources (pp. 385–407). Washington DC: The National Academies Press.
Google Scholar
Coelho, E., & Nunes, L. C. (2011). Forecasting mortality in the event of a structural change. Journal of the Royal Statistical Society, Series A, 174(3), 713–736.
Article
Google Scholar
Currie, I. D., Durban, M., & Eilers, P. H. C. (2004). Smoothing and forecasting mortality rates. Statistical Modelling, 4(4), 279–298.
Article
Google Scholar
Czado, C., Delwarde, A., & Denuit, M. (2005). Bayesian Poisson log-bilinear mortality projections. Insurance: Mathematics and Economics, 36(3), 260–284.
Google Scholar
Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89–121.
Article
Google Scholar
European Commission (2011). The 2012 ageing report: underlying assumptions and projection methodologies. European Economy 4. http://ec.europa.eu/economy_finance/publications/european_economy/2011/pdf/ee-2011-4_en.pdf. Accessed 29 June 2016
European Commission (2014). The 2015 ageing report: underlying assumptions and projection methodologies. European Economy 8. http://ec.europa.eu/economy_finance/publications/european_economy/2014/pdf/ee8_en.pdf. Accessed 29 June 2016
French, D., & O’Hare, C. (2014). Forecasting death rates using exogenous determinants. Journal of Forecasting, 33, 640–650.
Article
Google Scholar
Frenk, J., Bobadilla, J. L., Stern, C., Frejka, T., & Lozano, R. (1991). Elements for a theory of the health transition. Health Transition Review, 1(1), 21–38.
Google Scholar
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1(3), 515–533.
Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. (2003). Bayesian data analysis. CRC Press Inc.
Gelman, A., & Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., Rubin, D. B. (2014). Bayesian data analysis. Third edition. CRC Press Inc.
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, 6(6), 721–741.
Article
Google Scholar
Girosi, F., & King, G. (2008). Demographic forecasting. Princeton University Press
Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society, Series B, 69(2), 243–268.
Article
Google Scholar
Haberman, S., & Renshaw, A. E. (2012). Parametric mortality improvement rate modelling and projecting. Insurance: Mathematics and Econometrics, 50(3), 309–333.
Google Scholar
Horiuchi, S., & Wilmoth, J. (1995). Aging of mortality decline. Presented at the Annual Meeting of the Population Association of America, San Francisco, California, April 6–8, 1995
Human Mortality Database (2013). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org.
Hyndman, R. J., & Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: a functional data approach. Computational Statistics and Data Analysis, 51, 4942–4956.
Article
Google Scholar
Hyndman, R. J., Booth, H., & Yasmeen, F. (2013). Coherent mortality forecasting: the product-ratio method with functional time series models. Demography, 50(1), 261–283.
Article
Google Scholar
Hyndman, R. J., with contributions from Booth, H., Tickle, L., Maindonald, J. (2015). Package demography: forecasting mortality, fertility, migration and population data. R package, Version 1.18
Jackman, S. (2009). Bayesian analysis for the Social Sciences. John Wiley & Sons, Ltd
Jacobsen, R., Keiding, N., & Lynge, E. (2002). Long term mortality trends behind low life expectancy of Danish women. Journal of Epidemiology and Community Health, 56(3), 205–208.
Article
Google Scholar
Janssen, F., & de Beer, J. (2016). Projecting future mortality in the Netherlands taking into account mortality delay and smoking. Joint Eurostat/UNECE Work Session on Demographic Projections, Geneva, 18–20 April 2016
Janssen, F., & Kunst, A. (2007). The choice among past trends as a basis for the prediction of future trends in old-age mortality. Population Studies, 61(3), 315–326.
Article
Google Scholar
Janssen, F., van Wissen, L. J. G., & Kunst, A. E. (2013). Including the smoking epidemic in internationally coherent mortality projections. Demography, 50(4), 1341–1362.
Article
Google Scholar
Janssen, F., Rousson, V., & Paccaud, F. (2015). The role of smoking in changes in the survival curve: an empirical study in 10 European countries. Annals of Epidemiology, 25, 243–249.
Article
Google Scholar
Kannisto, V., Lauritsen, J., Thatcher, A. R., & Vaupel, J. W. (1994). Reductions in mortality at advanced ages: several decades of evidence from 27 countries. Population and Development Review, 20(4), 793–810.
Article
Google Scholar
Keilman, N. (2008). European demographic forecasts have not become more accurate over the past 25 years. Population and Development Review, 34(1), 137–153.
Article
Google Scholar
Keyfitz, N. (1977). Applied mathematical demography. New York: John Wiley & Sons.
Google Scholar
King, R. (2012). Bayesian analysis for population ecology. Chapman and Hall/CRC
King, G., & Soneji, S. (2011). The future of death in America. Demographic Research, 25(1), 1–38.
Google Scholar
Kogure, A., & Kurachi, Y. (2010). A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions. Insurance: Mathematics and Economics, 46(1), 162–172.
Google Scholar
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. Adaptive Computation and Machine Learning series. The MIT Press
Kruschke, J. K. (2011). Doing Bayesian data analysis. a tutorial with R and BUGS. Academic Press, Elsevier
Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87(419), 659–671.
Google Scholar
Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421–431.
Google Scholar
Li, N., & Lee, R. (2005). Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method. Demography, 42(3), 575–594.
Article
Google Scholar
Li, N., Lee, R., & Gerland, P. (2013). Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography, 50(6), 2037–2051.
Article
Google Scholar
Lindahl-Jacobsen, R., Rau, R., Jeunea, B., Canudas-Romo, V., Lenart, A., Christensen, K., & Vaupel, J. W. (2016). Rise, stagnation, and rise of Danish women’s life expectancy. Proceedings of the National Academy of Sciences of the United States of America, 113(15), 4015–4020.
Article
Google Scholar
Lopez, A. D., Collishaw, N. E., & Piha, T. (1994). A descriptive model of the cigarette epidemic in developed countries. Tobacco Control, 3, 242–247.
Article
Google Scholar
Mitchell, D., Brockett, P., Mendoza-Arriage, R., & Muthuraman, K. (2013). Modeling and forecasting mortality rates. Insurance: mathematics and economics, 52(2), 275–285.
Google Scholar
OECD (2011). Pensions at a glance 2011: retirement-income systems in OECD and G20 countries. OECD Publishing. http://dx.doi.org/10.1787/pension_glance-2011-en. Accessed 29 June 2016
Oeppen, J. (2008). Coherent forecasting of multiple-decrement life tables: a test using Japanese cause of death data. Paper presented at the European Population Conference 2008, Barcelona, Spain
Oeppen, J., & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296(5570), 1029–1031.
Article
Google Scholar
Omran, A. (1971). The epidemiological transition. A theory of the epidemiology of population change. The Milbank Memorial Fund Quarterly, 49(4), 509–538.
Article
Google Scholar
Orzack, S. H. (2012). The philosophy of modelling or does the philosophy of biology have any use? Philosophical Transactions of the Royal Society B, 367(1586), 170–180.
Article
Google Scholar
Pedroza, C. (2006). A Bayesian forecasting model: predicting U.S. male mortality. Biostatistics, 7(4), 530–550.
Article
Google Scholar
Plummer, M. (2012). JAGS Version 3.3.0 user manual. http://people.math.aau.dk/~kkb/Undervisning/Bayes14/sorenh/docs/jags_user_manual.pdf. Accessed 29 June 2016.
Plummer, M. (2015). Package rjags: Bayesian graphical models using MCMC. R package version 3–15
Preston, S. H., & Stokes, A. (2012). Sources of population aging in more and less developed countries. Population and Development Review, 38(2), 221–236.
Article
Google Scholar
R Core Team (2012). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
Google Scholar
Raftery, A. E., & Lewis, S. M. (1992). Comment: One long run with diagnostics: implementation strategies for Markov Chain Monte Carlo. Statistical Science, 7(4), 493–497.
Article
Google Scholar
Raftery, A. E., Chunn, J. L., Gerland, P., & Ševčíková, H. (2013). Bayesian probabilistic projections of life expectancy for all countries. Demography, 50(3), 777–801.
Article
Google Scholar
Rau, R., Jasilionis, D., Soroko, E. L., & Vaupel, J. W. (2008). Continued reductions in mortality at advanced ages. Population and Development Review, 34(4), 747–768.
Article
Google Scholar
Renshaw, A. E., & Haberman, S. (2003). Lee-Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255–272.
Google Scholar
Renshaw, A. E., & Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38(3), 556–570.
Google Scholar
Russolillo, M., Giordano, G., & Haberman, S. (2011). Extending the Lee-Carter model: a three-way decomposition. Scandinavian Actuarial Journal, 2011(2), 96–117.
Article
Google Scholar
Schmertmann, C., Zagheni, E., Goldstein, J. R., & Myrskylä, M. (2014). Bayesian forecasting of cohort fertility. Journal of the American Statistical Association, 109(506), 500–513.
Article
Google Scholar
Ševčíková, H., & Raftery, A. E. (2015). Package bayesLife: Bayesian projection of life expectancy. R package version 2.2-0. Original WinBugs code written by Jennifer Chunn.
Ševčíková, H., Li, N., Kantorová, V., Gerland, P., Raftery, A. E. (2016). Age-specific mortality and fertility rates for probabilistic population projections. In R. Schoen (Ed.), Dynamic Demographic Analysis. The Springer Series on Demographic Methods and Population Analysis, Volume 39, (pp. 69–89). Springer International Publishing Switzerland 2016.
Shang, H. L. (2012). Point and interval forecasts of age-specific life expectancies: a model averaging approach. Demographic Research, 27(21), 593–644.
Article
Google Scholar
Shang, H. L., Booth, H., & Hyndman, R. (2011). Point and interval forecasts of mortality rates and life expectancy: a comparison of ten principal component methods. Demographic Research, 25(5), 173–214.
Article
Google Scholar
Soneji, S., & King, G. (2012). Statistical security for social security. Demography, 49(3), 1037–1060.
Article
Google Scholar
Stoeldraijer, L., van Duin, C., van Wissen, L., & Janssen, F. (2013). Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: the case of the Netherlands. Demographic Research, 29(13), 323–354.
Article
Google Scholar
Stoeldraijer, L., Bonneux, L., van Duin, C., van Wissen, L., & Janssen, F. (2014). The future of smoking-attributable mortality: the case of England & Wales, Denmark and the Netherlands. Addiction, 110, 336–345.
Article
Google Scholar
Su, Y.-S., & Yajima, M. (2015). Package R2jags: using R to run jags. R package version 0.05-6. http://cran.r-project.org/web/packages/R2jags/R2jags.pdf Accessed 29 June 2016
Thun, M., Peto, R., Boreham, J., & Lopez, A. D. (2012). Stages of the cigarette epidemic on entering its second century. Tobacco Control, 21, 96–101.
Article
Google Scholar
Torri, T., & Vaupel, J. (2012). Forecasting life expectancy in an international context. International Journal of Forecasting, 28, 519–531.
Article
Google Scholar
Tuljapurkar, S., Li, N., & Boe, C. (2000). A universal pattern of mortality decline in the G7 countries. Nature, 405, 789–792.
Article
Google Scholar
United Nations (1982). Model life tables for developing countries. Sales no. e.81.xiii.7, United Nations publication. http://www.un.org/esa/population/publications/Model_Life_Tables/Model_Life_Tables.htm. Accessed 29 June 2016.
United Nations. (2013). World population prospects: the 2012 revision. New York: United Nations.
Google Scholar
Vallin, J., & Meslé, F. (2004). Convergences and divergences in mortality. A new approach to health transition. Demographic Research, Special collection, 2(2), 11–44.
Article
Google Scholar
Vallin, J., & Meslé, F. (2009). The segmented trend line of highest life expectancies. Population and Development Review, 35(1), 159–187.
Article
Google Scholar
van Berkum, F., Antonio, K., Vellekoop, M. (2013). Structural changes in mortality rates with an application to Dutch and Belgian data. AFI 1379 Working Paper, KU Leuven, Leuven
Vaupel, J. W. (1997). The remarkable improvements in survival at older ages. Philosophical Transactions of the Royal Society B, 352(1363), 1799–1804.
Article
Google Scholar
Vaupel, J. W. (2010). Biodemography of human ageing. Nature, 464, 536–542.
Article
Google Scholar
Wang, H., & Preston, S. H. (2009). Forecasting United States mortality using cohort smoking histories. Proceedings of the National Academy of Sciences of the United States of America, 106(2), 393–398.
Article
Google Scholar
White, K. M. (2002). Longevity advances in high-income countries, 1955–96. Population and Development Review, 28(1), 59–76.
Article
Google Scholar
Wiśniowski, A., Smith, P. W. F., Bijak, J., Raymer, J., & Forster, J. J. (2015). Bayesian population forecasting: extending the Lee-Carter method. Demography, 52(3), 1035–1059.
Article
Google Scholar